Interdisciplinary approach for energy management in office buildings: Energy Optimisation Model.

Maciej Czajka Sr Technical Manager

Bartłomiej Dessoulavy-Śliwiński PhD, Faculty of Economic Sciences

Anglet (F), June 29-July 01, 2016

Abstract

Trend (UK) is a leader of networked building controls focused on energy savings (BeMS). Beginning from simple solutions as selfreseting setpoints through optimized start-stop algorithms up to model based energy optimizer Trend tries to keep the comfort conditions and human's satisfaction on high levels decreasing energy use in a background. The latest solution that is still in beta phase gives absolutely positive feedback and helps to reduce cost, energy or CO2 emission in new buildings and old ones. The more points of installations are monitored/controlled the more energy can be saved. The model collects data about ambient and installation parameters, checks energy demands and estimates the best adjustments for main "energy consumers" in a building, e.g. chillers, boilers, AHUs. The positive action of the optimizer can be seen through a simple day-after-day switching strategy that changes user's adjustments to calculated ones and vice-versa.

Despite technology development and wide plans to deploy smart metering in office buildings, there is still little knowledge of occupant energy use in offices. The objectives of the presentation is to investigate the effect of individual feedback on energy use at the workplace, and to show the relationship between occupant behavior, Facility Management strategy and building technology. Office energy use is influenced by variety of factors, some within the control of BeMS, while others are perhaps beyond the control. Our presentation is based partly on "Energy Cultures" framework presented by Stephenson et al.'s (2010), where he suggests that energy consumption behavior results from interactions between cognitive norms, material culture and energy practices." In the presentation we would like to show that Facility Management strategy driven by technological change would be more rational way to obtain minimal energy use in office building than implementation of pure energy-saving technology. Solving this problem actors must take interdisciplinary viewpoints (real estate, space management, finance, energy market, occupant behaviours, organizational behaviour, building technology). We would like to show how modern technology helps to overcome organization's unwillingness to consider changes to their energy behaviours and helps Facility Managers to do it properly. Energy management in office buildings is very important part of Facility Managers strategy. Presentation discusses the importance of adopting an integrated interdisciplinary approach. The need for a wide range of factors is initially required including occupants behaviours and their comfort zones, organizational primary processes, cost/benefit solutions etc. and all influence Facility Management practice. We would like to show that integrated energy management of an office buildings is necessary to use technical capabilities most effectively. The proposed Integrated Energy Management Model for Facilities Managers provides insight into the assessment of parameters that affect energy use, but also maintenance costs, organizational performance and risk in facilities. This model helps to create an energy strategy that addresses financial obligations and affords scalability for the future.

Agenda

- Why the BeMS?
- Building installations and BeMS
- Facts & results
- Energy cultures framework
- Energy optimisation methods & case studies
- Energy Clusters
- Central Energy Optimizer
- The Next Step

Trial introduction

- 4 participants (alone or in a small group), active participation in the trial
- Non-personalized results at the end of the presentation

Why The BeMS?

DIRECTIVE 2010/31/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

of 19 May 2010 on the energy performance of buildings

(recast)

(3) Buildings account for 40 % of total energy consumption in the Union. The sector is expanding, which is bound to increase its energy consumption. Therefore, reduction of energy consumption and the une of energy from renewable sources in the buildings sector constitute important measures needed to reduce the Union's energy dependency and greenhouse gas emissions.

^{are} ^{responsible} ^{for} ^{ca.} 25% of global co2 emissions. FROST & SULLIVAN

Ponad 40% światowego zużycia energii generują budynki – ich systemy oprzewania, chłodzenia i oświetlenia odpowiadają za ok. 25% globalnych emisji CO₂. Co więcej, każde o dnia powstają nowe energechłonne budynki, a miliony już istniejących obecnie będą frakcjonować przez najbliższe kilkadziesię lot

"Inteligent Energy", report by F&S, 2010

Why The BeMS?

Table 6. Electricity consumption by end use, 2012

						Total	electricit	y consu	mption (trillion B	tu = ca 2	93 GWh)			_	.	B atata a		
	Total	%	Space heat- ing	Cool- ing	Venti- lation	Water heat- ing	Light- ing		Refrig- eration		Com-	Other		eia	P	Independent U.S. En Adminis	ergy In	formatio	on
Principal building activity																			
Education	458	9	10	90	68	3	78	4	40	21	78	66							
Food sales	208	4	2	6	12	0	16	10	147										
Food service	279	5	5	30	31	3	19	46	114	Tab	ole 7. N	latural g	as consur	mption by end use	e, 2012				
Health care	365	7	4	69	82	1	61	8	19										
Inpatient	251	5	2	58	46	1	40	7	14							Tota	l natural gas (consumption (t	rillion Btu)
Outpatient	114	2	2	11	37	0	21	1	4										
Lodging	304	6	8	39	49	3	40	10	33					Total	%	Space heating	Water heating	Cooking	Other
Mercantil		13	13	91	121	7	140	6	191					TOTAL	70	nearing	nearing	COOKINg	Other
tetail (other than mall)	281		5	40	47	1	72	2	53	Prin	cipal bui	ding activit	v						
Enclosed and strip malls	424	8	8	52	75	7	68	4	139		ation			291	10	212	54	10	14
Office	865	16	19	116	214	2	148	2	28		d sales			53	2	29	3	19	2
ublic assembly	275		9	82	24	0	35	4	25		d service			227	- 8	35	40	152	- 0
Public and safety		1	1	15	5	1	15	1	3		Ith care			265	9	159	61	32	12
Religious worship	81	2	3	15	13	0	9	1	4		patient			219	8	121	58	30	10
Service	127	2	3	16	14	0	37	0	5		Itpatient			46	2	39	4	2	2
Warehouse and storage	284	5	4	34	13	1	85	0	47	Lodg				221	- 8	46	113	Q	- 6
Other	191	4	3	26	16	0	37	0	15		cantile			291	10	159	58	66	8
Vacant	26	0	1	2	4	0	5 (Q	1			- unan ma		/4	10	63	4	6	2
										En		nd strip ma		217	8	97		60	- 6
										Offic		na sanp na		282	10	22	29	Q	13
										-	lic assen	ably		135	5	18	6	9	2
										T UD		and safety		41		22	16	2	1
	25	53.5	+ 8	2.6	=					Delia	gious wo			87	3	67	10 Q	10	Q
										Serv		isinp		122	4	98	21	Q	Q
	336	\$1	TV	\/h	(/)							and storage		122		109	10	Q	7
	000			V I I	vy					Othe				81	2	55	20	1	,

Other

Vacant

81

13

3

0

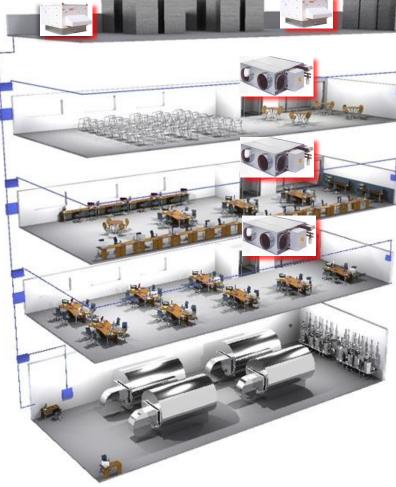
55

11

7 Q Q

1

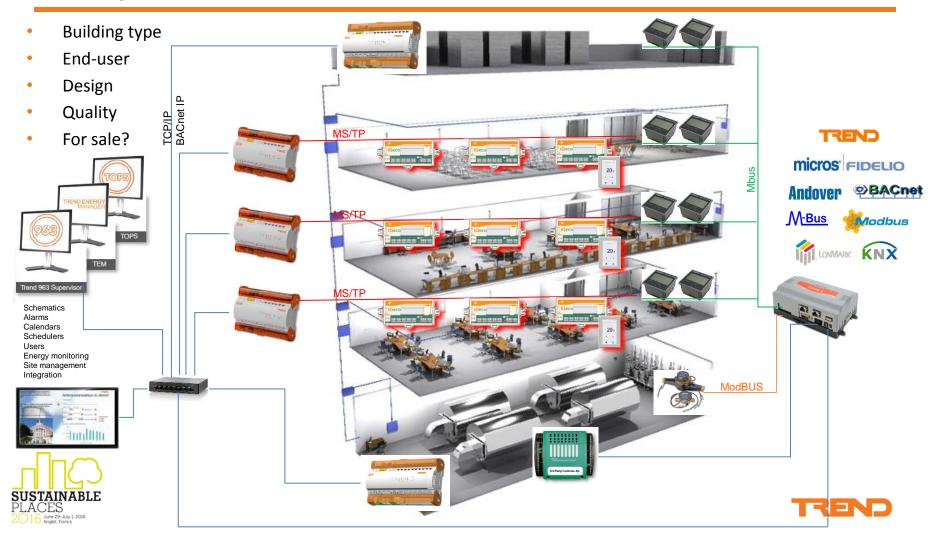
Q

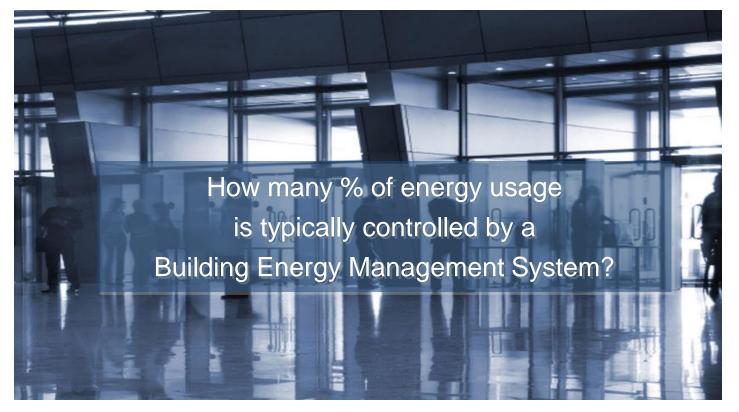

2

Q

Building installations

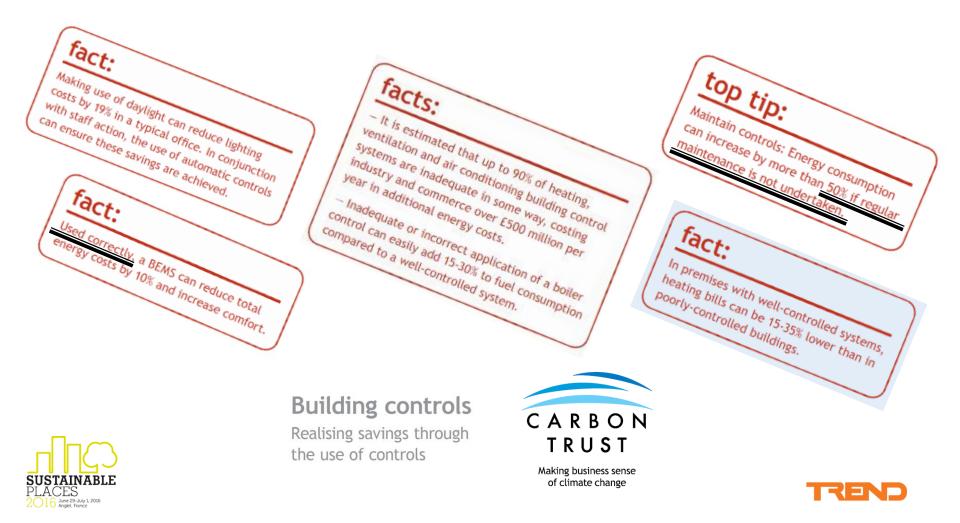
ACES 16 June 29-July 1, 2016 Anglet, France


- Electricity
- Lights In/Ext
- Heating
- Cooling


.

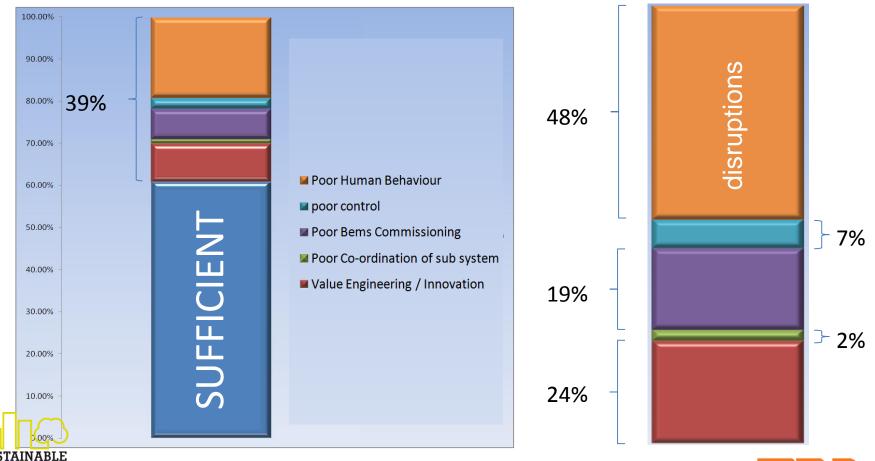
- Mech. Vent.
 - Natural Vent.
- A/C
- Water
- Gas
- Sewige
- Transport
- Parking
- Metering
- Monitoring
- (Security)

Building installations dressed in a tailored BeMS



BeMS – is it enough? Other facts

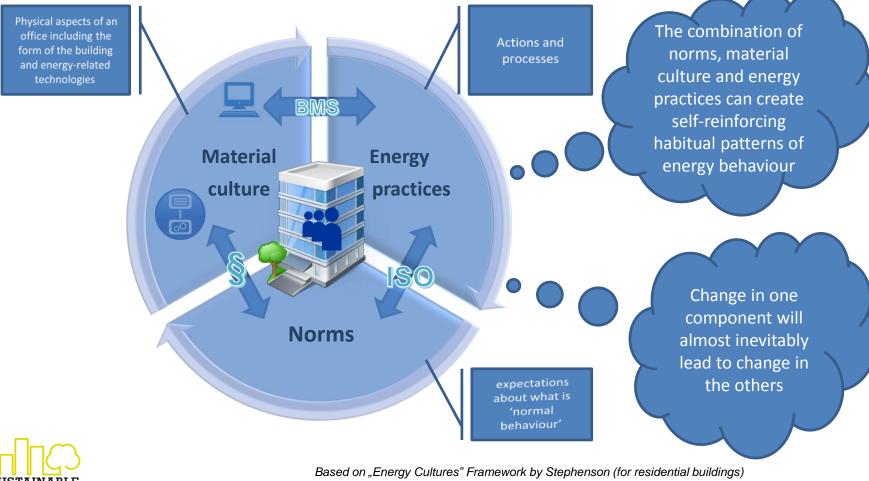
Quiz 2


How much of a total energy usage is sufficient to keep a commercial building in operation?

[%]

Minimum energy level and reasons of waste

June 29-July 1, 2016 Anglet, France



TREND

Energy cultures framework

Material culture – BeMS based technical improvement

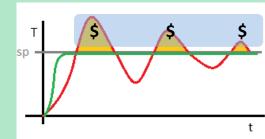
VSD frequency inverters

IQeco IRC Controllers

Pumps, fans >1kW Avoiding resonant frequencies Easy to reduce comfort Auto adjustment of volume/pressure

Dedicated for room/zone control (HVAC, lighting) 100s of controllers in non-domestic buildings.

Reduced power consumption on stand-by.

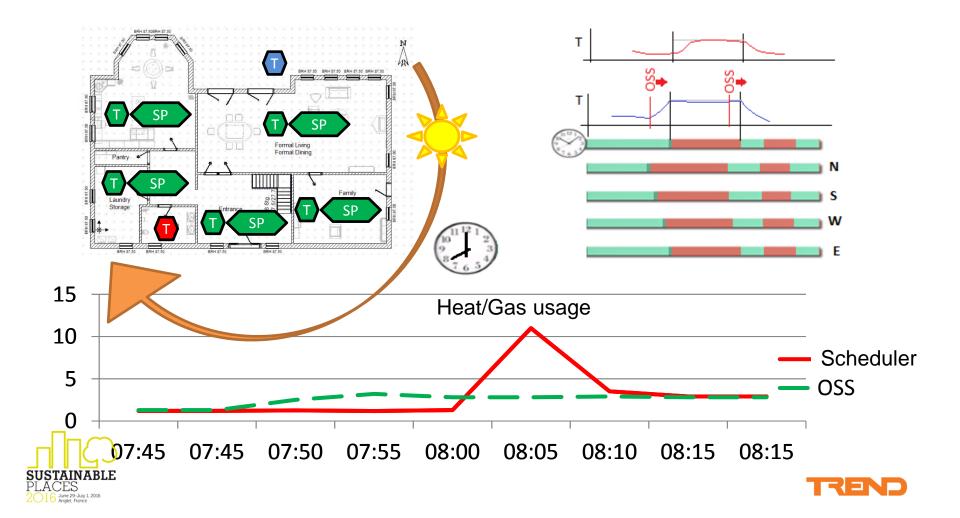

Reduces energy usage by lowering pump/fan speed P1/P2≈ (n2/n1)^3 (near a rated operating point)

OSS – Optimum Start-Stop

Model based and statistical algorithms. For heating & cooling installations

OAT Roem T Water T Water T Water T School C Scho IQeco: 7VA@230V / 10VA@24V vs others (12VA). Warsaw in 2013: 196 hotels, 30226 beds, ca 13000 rooms. 12-7=5VA, 5VAx13000=65kVA @0.55PLN/kWh -> 73kEUR/year

PID Auto Tuning – adjusting dynamic controller paramaters


For all PID control loops Based on Z-N methods: -Step - Limit cycle - Multistep - Estimates Kp,Ti, Td

Provides required parameters just-in-time Saves energy, avoids peaks

Provides hi-quality control: short time, no setpoint deviation Saves energy by removal of oscillations.

Example – saving Energy & increasing human satisfaction with OSS

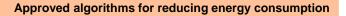
Energy practices & norms - BeMS services, tricks & awareness support

uilding opera

Periodical BeMS audits and optimization

Energy efficiency ALWAYS gets lover in time Periodical BMS optimization helps to slow down it.

2008-2011, 933 audits, 3,420 days on site, Annualised saving: Energy: 194,878,252 kWh Money: 9,505,692 mln GBP, payback for investment in audit: 3 months Emissions: 147,827 tons CO2.


Green Building certification - BREEAM

The word's leading sustainability assessment method for masterplanining projects, infrastructure and buildings

BREEAM®

BMS allows for better certification It affects the highest rated areas: Health & Wellbeing, Energy, Water, Also: Management and Innovations

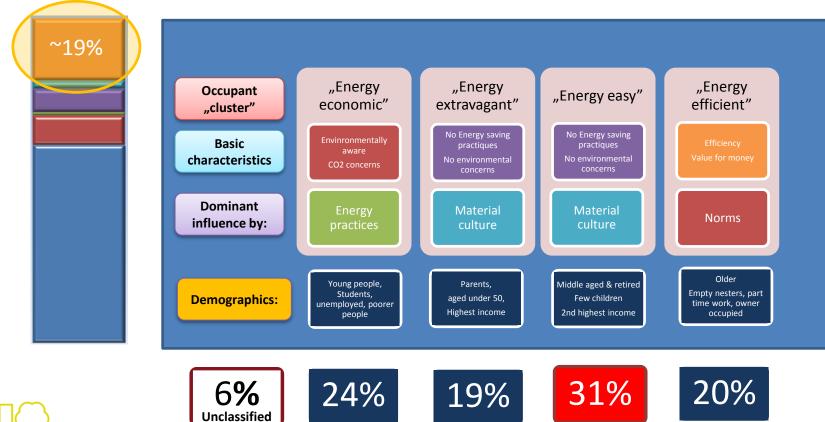
Environmental Section	Weighting					
Management	12%					
	15%					
	19%					
Transport	8%					
	6%					
Materials	12.50%					
Waste	7.50%					
Land Use & Ecology	10%					
Pollution	10%					
Total	100%					
Innovation (additional)	10%					

Dedicated for zoned buildings where users, by default, do not care about energy: hotels, offices, shopping galeries:

The impact on the senses rather than effective action (fan noise) Auto-return adjustment of setpoints after manipulations

Trend EnergyEYE – raised awareness

Big screen application Combined functionality of Energy dashbord and advertising media


Green/Yellow/Red icons:

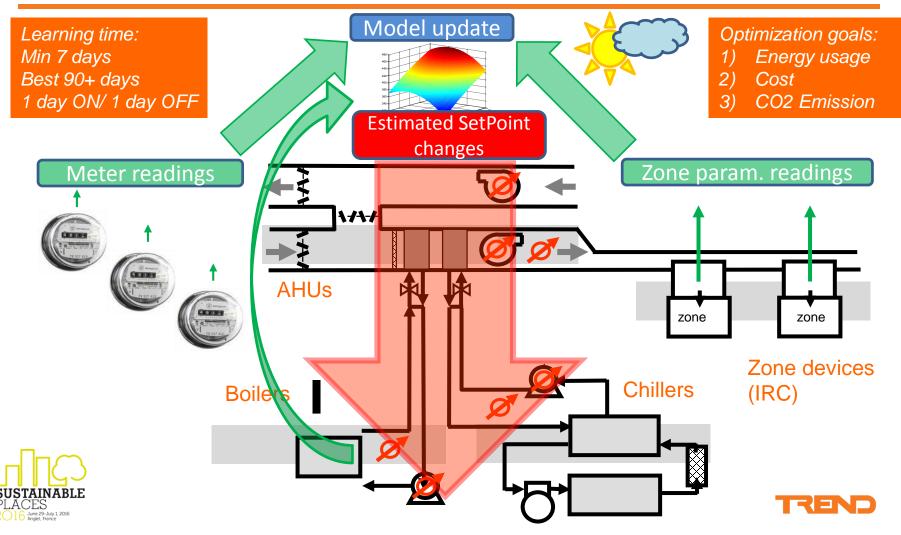
Simplified "**broadcast**" to indicate current and past energy conditions: Multimedia display to promote "green" behaviours and raise people's awareness

Energy Clusters

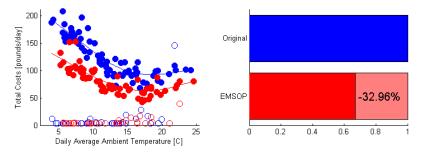
Identification of occupants clusters

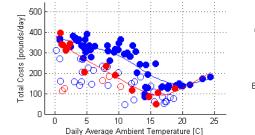
Must it be a question?

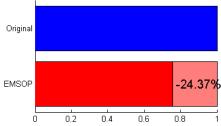
Save a % on ENERGY... -1.0% ... or Satisfy each of Min(II)ions?


IQ®CEO - The important step on the way to sustainable satisfaction

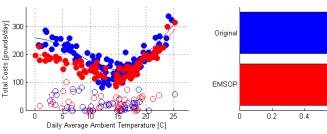
- Central Energy Optimizer Model Predictive Control (MPC) based on historical and current data
- Keeps zone (human's) comfort unchanged, adjustes main HVAC setpoints


The solution schematics

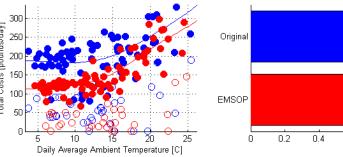



Early pilot site savings achieved

Office bldg (Manchester) - 33% savings



Workshop (Warwickshire) - 24% savings



Office bldg (Bristol) -14% savings

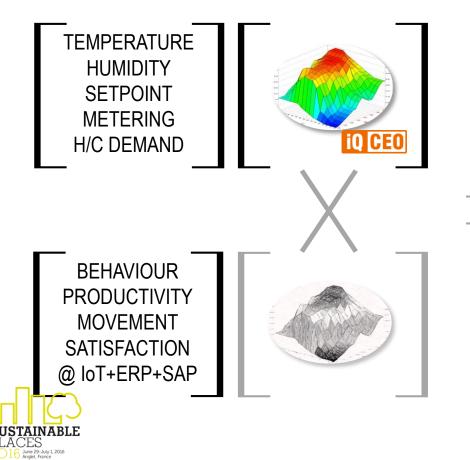
-13.649

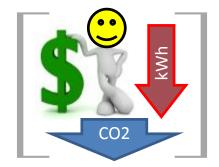
University (North London) - 26% savings

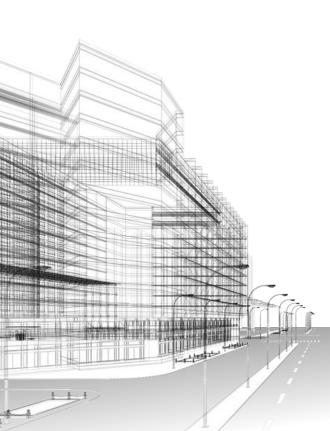
10 - 35% savings on HVAC energy costs over typical building control

0.8

0.6


-25.70%




The next step...

... soon ?

Thank you & go to the dashboard

Maciej Czajka maciej.czajka@rendcontrols.com Sr Technical Manager at Trend Control Systems Ltd, Addr: Honeywell Sp z o.o., 39 Domaniewska Str., 02-672 Warsaw, PL

Bartłomiej Dessoulavy-Śliwiński bsliwinski@wne.ue.edu.pl PhD at Faculty of Economic Sciences, University of Warsaw Addr: WNE UW, 44/50 Długa Str., 00-241 Warsaw, PL

