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Context

 40% of energy consumed by 
buildings worldwide

 Focus on new strategies for 
 Energy conservation

 Energy savings

 One of TOPAs objectives: advanced control techniques
 Ventilation

 Heating
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 Energy savings
 Take into account “user comfort”, at least bounds on Temp. & CO2

This work is supported by TOPAs H2020 project, GA nb 676760 (https://www.topas-eeb.eu/).
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TOPAs 
advanced control objective

 Develop a generic modelling 
framework 

 Deploy, Test and Validate
 Post-grad room in NIMBUS

 Improve thermal comfort and air 
quality

 Energy savings

 Post-grad room : open office in NIMBUS building
– CIT Campus, Cork, Ireland

– Climate zone : temperate maritime (mild winter, cool summer, regular rains)

MPC => Model-based control approach
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4. Application
a. Distributive Model Predictive 

Control for thermal comfort

b. TOPAs control architecture

c. Results

1. Context and objectives
a. Context

b. Objective

2. Problem statement
a. MPC basics

b. Problem definition

c. Modelling types

3. Generating models for MPC
a. Acquiring data for modelling

i. General system description

ii. Capturing zone behavior

b. Modelling and identification

i. Model structure

ii. Parameter optimization 
problem

iii. Validation process



Model Predictive Control Basics
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 Model Predictive Control philosophy
 Model-based strategy (state-space, transfer function)
 Receding horizon to predict future behavior
 Compute optimal control sequence

 Why MPC for building ?
 Coordinate multiple inputs 

/ outputs systems
 Economic vs performance 

tradeoff
 Constraint handling

Rely on a (sampled) dynamic model



Problem definition
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 Considering a multiple zones building
 Coupling between zones

 Controlled ventilation and heating

 Outdoor conditions

 How to generate a numerical model (≠ simulation model)
 Suitable for MPC control design

 Accurate

 Modular



Modelling Type
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LoN: Law of Nature; A: Analogy; DC: Data Collection
1 : [SP 2017, IFAC-2017]

 Definition: 
model = a mathematical representation of a system, which describes the 

relationships between an entrie 𝑢 and an output 𝑦 subject to 
exogenous signals 𝑤

 State of arts:
White box Grey box1 Black box

Modelling principle Physical Behaviour Identification

Source of knowledge LoN A, LoN, DC DC

Advantage Physical meaning Easy to extend Hand on the model 
structure

Disadvantage - Expertise in the 
domain
- Complex

- Difficult to calibrate - Sensitivity to data 
quality
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3. Generating models for MPC
a. Acquiring data for modelling

i. General system description

ii. Capturing zone behavior

b. Modelling and identification

i. Model structure

ii. Parameter optimization 
problem

iii. Validation process
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General zone description
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Regulated Boundaries Exogenous Control

𝑇𝑧𝑖
: Temperature (°C)

𝑐𝑧𝑖
: CO2 (ppm)

North face: 𝑇𝑏𝑛, 𝑐𝑏𝑛

East face: 𝑇𝑏𝑒 , 𝑐𝑏𝑒

South face: 𝑇𝑏𝑠 ,𝑐𝑏𝑠

West face: 𝑇𝑏𝑤 , 𝑐𝑏𝑤

Ceiling: 𝑇𝑏𝑐 , 𝑐𝑏𝑐

Floor: 𝑇𝑏𝑓, 𝑐𝑏𝑓

𝑜𝑐𝑐𝑡𝑜𝑡: total occupancy

𝑄𝑠𝑜𝑙𝑎𝑟: heat input 

generated by solar 

radiation (W)

𝑢𝑤𝑖𝑛: air flow / window position 

(%)

𝑢𝑝𝑤𝑟: heating power (W)

 Find a proper description that:
 Defines the input & output variables
 Is common to any zone

 Four types of variable



Capturing zone behavior
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 Challenging because of:
 Highly coupled 

interactions
 Occupancy & weather 

conditions

Main idea: Stimulate the system along its whole frequency spectrum

 Three types of data set
 Working day;
 Weekend day;
 Experiments day: PRBS or  scenarios 

on the manipulated variables

Training data = a weighted sum of the three types
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Model structure
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 We propose the Brunowski state-space form
 Naturally sparse => ease the process of identification
 State matrices => cope with early MPC algorithms
 Partitioned matrix => ready for distributive / decentralized application

𝐴 =

0 1 0
0 0 1

𝑎11 𝑎12 𝑎13

0 0 0
0 0 0

𝑎14 𝑎15 𝑎16

0 0 0
𝑎21 𝑎22 𝑎23

0 1 0
𝑎24 𝑎25 𝑎26

𝑎31 𝑎32 𝑎33 𝑎34 𝑎35 𝑎36

, 𝐵 =

𝑏11 𝑏12

𝑏21 𝑏22

𝑏31 𝑏32

𝑏41 𝑏42

𝑏51 𝑏52

𝑏61 𝑏62

𝑛1 = 3 𝑛2 = 2 𝑛3 =1

𝑛𝑖: design parameters
𝑎𝑖𝑗, 𝑏𝑖𝑗: model parameters => to identify

The model structure is defined by the designer



Parameters optimization problem (1)
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𝑧𝑡 = 𝑇𝑧𝑖
, 𝑐𝑧𝑖

, ut = 𝑢𝑤𝑖𝑛, 𝑢𝑝𝑤𝑟 ,

𝐹 𝜃 =  
𝑡=1

𝑁

𝑦𝑡 𝜃 − 𝑧𝑡
2

𝜃 = aij, bij, 𝑥0 ∈ ℝ𝑛𝑥 , 𝛽 ∈ ℝ𝑛𝑦

Find the model parameters by solving an optimization problem

 Denote

 Optimisation problem

𝜃∗ = 𝑎𝑟𝑔 min
Θ∈𝐷

 𝐹(𝜃

Parametrized model

(Governing equation)

𝑥𝑡+1 = 𝐴(𝜃 𝑥𝑡 + 𝐵(𝜃 𝑢𝑡, 𝑥0(𝜃 
𝑦𝑡 = 𝐶𝑥𝑡 + 𝐷𝑢𝑡 + 𝛽(𝜃 

(Vector of parameters to identify)

 Cost function
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Parameters optimization problem (2)

- Data collection
- Parametrized model
- Gains constraints

I.M.T. 
Toolbox

State-space 
model 

identification

Cost 
function

𝐹 𝜃

Stability 
constraints

𝜃𝑝+1 ?

Find the model parameters by resolving an optimization problem

Identification & Modelling Tool:
 Includes natural robustness to 

model uncertainties
 Deals with Brunowski form.
 Allow static gains constraints.



Validation process
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 Model Predictive Control philosophy

𝜖𝑝(𝑘 =  

𝑘=𝑡

𝑡+𝑁𝑝
𝑦𝑡 𝑘 − 𝑧𝑡 𝑘

𝑧𝑡 𝑘

2

How to validate the model for MPC purpose?

 Idea: compute at sample 𝑘 the relative error on receding 
horizon 𝑁𝑝

Use the dynamic model

to predict future

behavior and compute the

optimal control sequence



Validation process
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 Example with 432 sampling (3 days)
(𝛾 = 350, 𝜖𝑚𝑎𝑥 = 15%)
 Thermal model validated for 𝑁𝑝 ≤ 5

 CO2 model validated for 𝑁𝑝 ≤ 2

𝜖𝑝(𝑘 =  

𝑘=𝑡

𝑡+𝑁𝑝
𝑦𝑡 𝑘 − 𝑧𝑡 𝑘

𝑧𝑡 𝑘

2 For a defined 𝑁𝑝 analyse the results
 Measure occurrence
 Fix a tolerance 𝛾

 
𝜖𝑝 >𝜖𝑝𝑚𝑎𝑥

 𝑜𝑐𝑐 𝜖𝑝
𝑁𝑝𝑚𝑖𝑛

> 𝛾

𝛾 = 350

𝜖𝑚𝑎𝑥 = 15% 𝜖𝑚𝑎𝑥 = 15% Cumulative 
sum over 𝛾
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Distributive Model Predictive Control
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DiMPC framework 

x1

x2

x3

Measurements per zone: 
temperature, heating power, CO2 
level, windows opening
Measurements for the room:
#occupants

Thermal Comfort

Energy price

Indoor air quality

Control objectives

Windows opening

Maximum 
heating power

Constraints

MPC1
u1

u2

MPC3
u3

MPC2

Information exchange 
between zones : possibly, 
#occupants, heating power, 
windows opening

𝐽 =  
𝑘=1

𝑁𝑝

Ti
ref − Ti k

t
Qi Ti

ref − Ti k + ui
t k Rui k dt

Occupants

Outdoor
conditions

Occupancy & 
weather forecast

Identified model
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LINC / RTU

oBMS /
NIM

HMI

Heterogenous Building & Systems

TOPAs Core
Constraints

Control Objective

User settings

Pull measure
𝑇𝑠 = 60 to 600𝑠

Push setpoints:
𝑇𝑠 = 60𝑠

Computing unit

Occupancy & 
weather forecast

DiMPC Z1

Update control
𝑇𝑚𝑝𝑐 = 600𝑠

Computing unit

Occupancy & 
weather forecast

DiMPC Z1

Update control
𝑇𝑚𝑝𝑐 = 600𝑠

Computing unit

Occupancy & 
weather forecast

DiMPC Z1

Update control
𝑇𝑚𝑝𝑐 = 600𝑠

Push/pull 
data

TOPAs control architecture

Zone occupancyOutdoor
Temperature

KPIsEnergy use

Building manager
Identified model



Experimental results (winter)
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 Outcome
 Lower use of heater (energy saving)
 Enhance thermal comfort

 Scenarios
 Two consecutive days
 Similar occupancy and 

solar irradiation profile
 Winter conditions
 𝑇𝑟𝑒𝑓 = 22°𝐶



Experimental results (spring)
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 Scenarios
 Two consecutive & 

similar days
 𝑇𝑟𝑒𝑓 = 22°𝐶

 Spring conditions

 Outcome
 Enhance thermal comfort



Conclusion & Perspectives
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 The presented modelling approach
 Deals with multizone building and is extensible to new zones
 Copes with MPC controller design
 Is validated on receding horizons

 Successfully applied to TOPAs demonstration site
 Allowed to reduce (heat) energy consumption
 Handled comfort constraints

 Future work will concentrate on:
 Pursue execution until end-of-project
 Replicate the modelling on a second demo-site
 Adaptive algorithm to re-identify model according to seasonal 

changes
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From system to control law


