

HIGFLY: HIGEE TO FURANIC-BASED JET-FUEL TECHNOLOGY

Low-TRL Renewable Technologies Workshop

Sustainable Places 2022

M. Fernanda Neira D'Angelo (TU/e, Coordinator)

Consortium

9 partners, 4 countries,

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°101006618

The present publication reflects only the author's views and the European Union is not liable for any use that may be made of the information contained therein.

HIGEE TO FURANIC-BASED JET-FUEL TECHNOLOGY HIGFLY

RIA in H2020 WP «Secure, Clean and Energy Efficiency»

Developing the next generation of renewable energy technologies

Jan 2021 ← 4 years = 48 months — Dec 2024

M1-M18

M19-M36

M37-M48

~today

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°101006618

The present publication reflects only the author's views and the European Union is not liable for any use that may be made of the information contained therein.

HIGFLY Overall Aim

HIGFLY aims to develop the next generation of technologies for the production of advanced renewable jet fuels from abundant and sustainable biomass feedstocks.

HIGFLY vs. alternative bio jet fuel technologies

	Conventional bio jet fuels	Advanced bio jet fuels	
	HEFA	Gas-to-Jet & Alcohol-to-Jet	HIGFLY
Feedstock	Used cooking oil, fats, vegetable oils	Forestry residues, agri-residues, biogenic wastes, etc.	
	Scarce and costly feedstock	Abundant and low cost feedstock	
Carbon efficiency of	50-65%	20-65%	70-90%
key conversion step	High resource efficiency	Low resource efficiency	High resource efficiency
	 High operation costs 	 High capital costs 	• Synergy with other biorefineria
	 Regulatory restricted to 1.7% of total jet fuel 		Reduced costs

Project Concept

MICELY -

HIGFLY Objectives

Main aim: develop the next generation of technologies for the production of advanced renewable jet fuels from abundant and sustainable biomass feedstocks.

Feed

To utilise abundant and sustainable feedstocks, e.g. 2G biomass, biogenic wastes, and sustainably cultivated biomass.

Technology

To develop and demonstrate at TRL3-4 innovative technologies to produce advanced bio jet fuels resource, energy and cost-effectively.

Robust catalytic materials and sustainable solvents

Disclosure or reproduction without prior permission of HIGFLY is prohibited.

Innovative, highly-efficient reactor and separation technologies

Value-chain & jet-fuel

To advance the knowledge of its innovative technologies through evaluation of the entire value chain, from feedstock(s) to bio jet fuel in order to:

- Demonstrate the advantages of the environmental, social and technoeconomic performance of HIGFLY technologies
- Accelerate prospect of regulatory compliance of HIGFLY's bio jet fuel.

Feed

To utilise abundant and sustainable feedstocks.

Evaluation & selection of suitable feeds

TRL3-4 demonstration (in the lab) of HIGFLY technology, step-wise, using a real biorefinery streams to bio jet fuel

To reach this goal, HIGFLY has already...

★Selected potential bio-refinery streams = combination of feed & bio-refinery technology.

Engaged in activities for sample exchange with other EU projects for lab-tests. One sample is being tested in first steps of HIGFLY - want to connect with HIGFLY?

M.f.neira.dangelo@tue.nl

Technology

To develop and demonstrate at TRL3-4 innovative technologies to produce advanced bio jet fuels resource, energy and cost-effectively.

1 Continuous synthesis of jet-fuel precursors (furanics) with high yields - targets ~90% (benchmark ~50-60%)

New catalyst materials

Synthesized, characterized & tested > 35 solid catalysts Identified 2 highly attractive - stable & selective Generated basis for IP

Catalyst structuring

Scalability & high efficiency

New solvents - Deep-Eutectic Solvents from natural compounds

Discovery of new solvents using Albased modelling using quantum mechanical data
5-10 times greater performance than conventional solvents

Basis for IP

New reactors based on HiGee technology

targets ~90% can be achieved!

7

Technology

To develop and demonstrate at TRL3-4 innovative technologies to produce advanced bio jet fuels resource, energy and cost-effectively.

- 1 Continuous synthesis of jet-fuel precursors (furanics) with high yields targets ~90% (benchmark ~50-60%)
- 2 Continuous synthesis of jet-fuel from furanic precursors with high yields targets ~80%

Synthesized, characterized & tested > 35 solid catalysts

Identified 3 highly attractive 80% target achieved

Catalyst forming for scalable processes

Batch to continuous

Gas vs. liquid phase process

Interested?
Presentation by Karla Dussan - Session: Renewable Energy Technologies, 9 September

Technology

To develop and demonstrate at TRL3-4 innovative technologies to produce advanced bio jet fuels resource, energy and cost-effectively.

- 1 Continuous synthesis of jet-fuel precursors (furanics) with high yields targets ~90% (benchmark ~50-60%)
- 2 Continuous synthesis of jet-fuel from furanic precursors with high yields targets ~80%
- Purification of key bio-oxygenates via membranes & affinity separation

To be continued...

Challenges:

- Timing/scales in technology integration useful: integration sessions
- Complexity in real vs. model feeds
- Analytics of real feeds

Value-chain & jet-fuel

Preliminary phases...

TEE: Overall process performance

Scenario code	Carbon Efficiency [%]	Energy efficiency [%]
T1	80%	74%
T2	78%	73%
S1	78%	70%
S2	89%	80%
S3	85%	77%
S4	78%	73%
D1	84%	77%
D2	78%	73%

To advance the knowledge of its innovative technologies through evaluation of the entire value chain, from feedstock(s) to bio jet fuel in order to:

- Demonstrate the advantages of the environmental, social and technoeconomic performance of HIGFLY technologies
- Accelerate prospect of regulatory compliance of HIGFLY's bio jet fuel.

Social & Environmental Life Cycle Assessment (sLCA & eLCC)

Evaluation HIGFLY jet fuel properties (vs. ASTM standard D7566)

- Impact and target blending ratios
- Barriers to certification
- Feedback to technology development

Challenge: Acquiring good quality data on time..

Dissemination and Communication activities

www.higfly.eu

@HIGFLY_H2020

@HIGFLY_H2020

HIGFLY

HIGFLY

HIGEE TO FURANIC-BASED JET-FUEL TECHNOLOGY HIGFLY

Contacts:

Fernanda Neira D'Angelo - coordinator m.f.neira.dangelo@tue.nl

