

Biofuels through Electrochemical transformation of intermediate BIO-liquids Project duration Dec 2020 - Nov 2024

Roman Tschentscher, Sintef/Norway

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 101006612.

UNIVERSITY

OF TWENTE.

JGO

Project focus

European challenge to develop new renewable energy systems for the future

Current production processes need high temperature and pressure, not optimal for bio-based molecules

Large demand of biofuels and high-value chemicals

Low-value biogenic oils (pyrolysis oils, black liquor) obtained by thermochemical conversion of stem wood and residues

2

Electrochemistry:

Objective:

- Store electricity in a carbon containing backbone
- Upgrade at mild conditions

Target reactions:

- **1. Anodic depolymerization of lignin fraction**
- 2. Anodic decarboxylation of acids

3. Cathodic reduction of carbonyl groups

3

Value chain and partners

Technical research focus

Production, characterization and testing of scalable electrodes and cells

- Variation of materials properties
- Implementation of automated characterization methods
- Development of novel production
 - methods

Electrochemical upgrading

- Lignin depolymerization
- Decarboxylation of acids
- Hydrogenation of oxygenates

Toolbox

Cells/rigs

Cells in batch and continuous bench and pilot systems

Electrode

Carbon-based: Graphite, BDD Metal-based: Ni, Cu, Pt

Analysis

Online: GC, MS Offline: NMR, LC-MS, LC-TOF-MS, LC-MS-MS, GC-GC-MS, GPC, SEM, TEM 6

EBIO concept - Development and integration of electrochemical processes for bio crude upgrading

EBIO case studies - Societal impact of a full-scale proces EBIO

- Discussions with stakeholders, surveys -
- Assessment of societal impact
- Identification of impact categories, criteria and possible indicators
 - Description of sectoral economic linkages

SUSTAINABLE PLACES 2022

Sep. 6 - Sep. 9, 2022 | Nice, France

in^{EBIO} H2020 Project info@ebio-h2020.eu

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 101006612.

