

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

Innovative energy storage system based on compressed heat: from design to experimental validation

Ō

José Luis Corrales Ciganda Maider Epelde Agirre Felipe Trebilcock Kelly

8

• •		•	•	•	•	•	•	•		•	•	•
• •	•	•	•	•	•		•	•	•	•	•	•
			•	•	•	•	•	•	•	•		

-	-		-	-	-	-
•	•		•	•	•	•
•	•	•	•	•	•	•
			•	•	•	•
					•	
			•	•	•	•

.

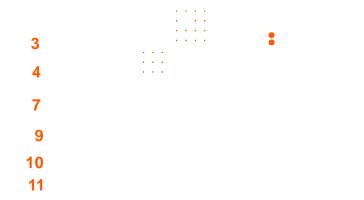
Index

01 CHESTER: the project at a glance

02 The CHESTER concept

03 System design: operation modes and numerical studies

...


05 Individual components experimental characterisation

04 The CHESTER Pilot Plant

...

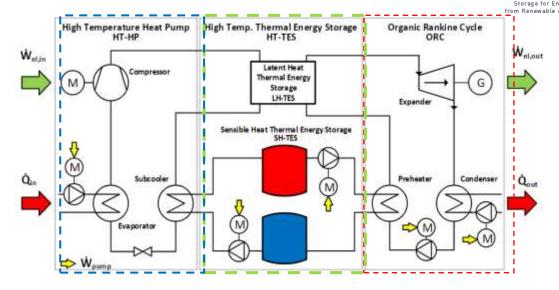
. . .

06 CHESTER systems first full cycle testing

THE CHESTER project and the consortium

Objectives

- I) Design and experimental test of a CHESTER (Compressed Heat Energy STorage for Energy from Renewable Sources) system
- II) Study integration case studies for Renewable Energy System
- III) Develop an energy management tool for the integration into existing grids
- IV) Develop business cases and an explotation roadmap for the technology



The CHESTER concept (a Pumped Thermal Energy System or PTES)

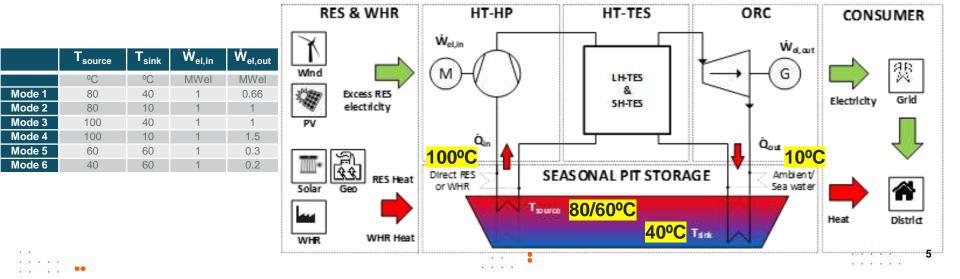
1) HTHP cycle (Heat Upgrade/charge)

- 2) Thermal Energy Storage
- 3) ORC cycle (Power Production/discharge)

Advantages over other Energy Storage Systems

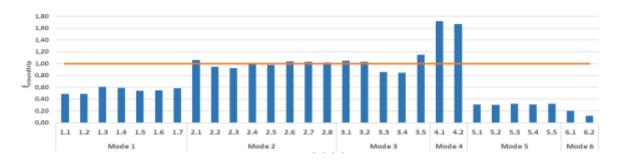
- No geographical constrains
- Low temperature heat recovery (waste heat, geothermal, solar heat..) increases round trip efficiency
- High flexibility with regards to energy sources and sinks use

Operation modes and evaluated scenarios ^[1]


. .

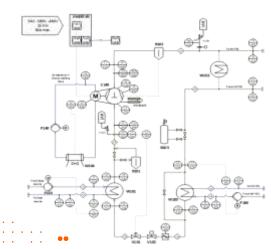
...

Sacar	Available energy				Energy Dema	nd	Operating strategy		
Season	PV	Solar	Wind	Heat	Elec Power	Re-charge*	Operating strategy		
Summer	High	High	Medium	Low	High	Medium	Storage of electric energy (mainly).		
Winter	Low	Low	High	High	High		Heat and electricity. Can provide domestic heat.		
Transition	Medium	Medium	Medium	Medium	High	Low	Heat and/or electricity. *Re-charge of pit storage.		

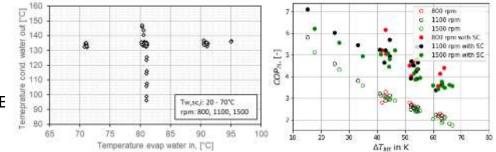

ā

Conclussions from the numerical studies ^[1]

- Heat source should provide hot water between 40-60°C up to 100°C. Heat sink system must absorb heat from the ORC's condenser at a temperature between 60°C to 10°C.
- Set-up should be able to provide the **possibility to evaluate different capacities and level of charge** for the LH-TES and the SH-TES (**independent control of heating sources and sinks**)
- HTHP and ORC systems, must be able to operate in part load conditions in order to achieve a full validation of the charging and discharging procedures of the CHEST system.
- Environmentally friendly refrigerants should be used (in study, Butene and R1233zd(E)). Other promising refrigerants: R1224yd and R1336mzz(E) (adequate when considering a PCM melting temperature of 133°C and for small-scale compressors and/or expanders).



System component I) High Temperature Heat Pump , HTHP tecnalia

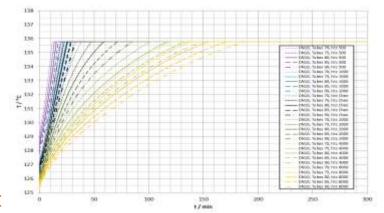

Compressed Heat Energ Storage for Energy from Renewable source

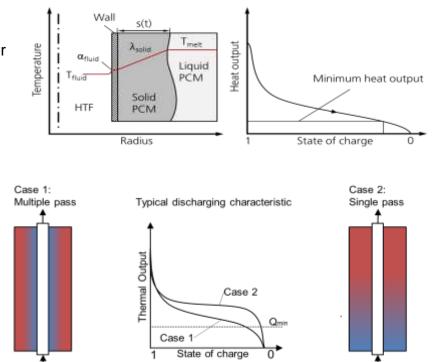
Inspiring Business

- Experimentally validated (Q_H in range 9-40kW) Variable compressor speeds (800-1500 rpm)
 Heat source (wáter) inlet T: 70 100°C
 Heat sink (wáter) outlet T : 100 150°C
- First experimental tests for compressor with R-1233zdE
- $\mathrm{COP}_{\mathrm{H}}$ in range 3-5 for Dtlif in range 20-60 K
- Good compressor efficiencies and stable operation

Viking HeatEngines Pistón,
HBC 511 511cc
SWEP V200THx70
SWEP B320HTLx100
386Hx50
R-1233zdE (HFCO)
Siemens MVL661.15-1.0

System component II) The PCM Thermal Energy Storage (TES) 4



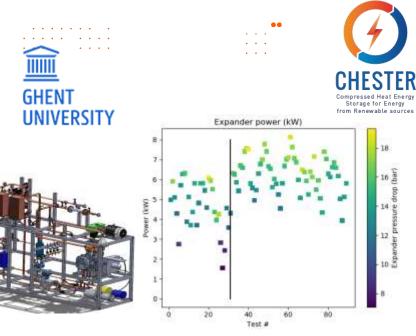

• LH-TES: design optimized with thermodynamic model

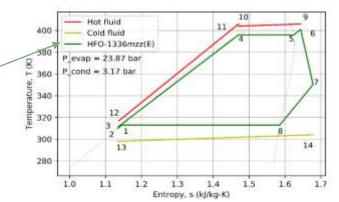
PCM: KNO3 – LiNO3 / Fin: Al6060 / Tube: 16Mo3
Eutectic-Mixture PCM with melting temperature 133 °C
Sim. Parameter: Nr of heat exchanger tubes and diameter
Compared 4 different fin designs

• SH-TES: Taylor made design

Charging time used as design criteria
Designed for 4 hours charging time
minimum volume of 1.667 m³ per single tank

System component III) The ORC System ^[2]

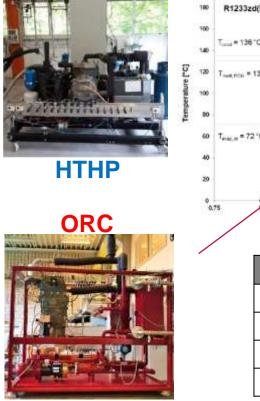

• Refrigerant selection based on simulated performance

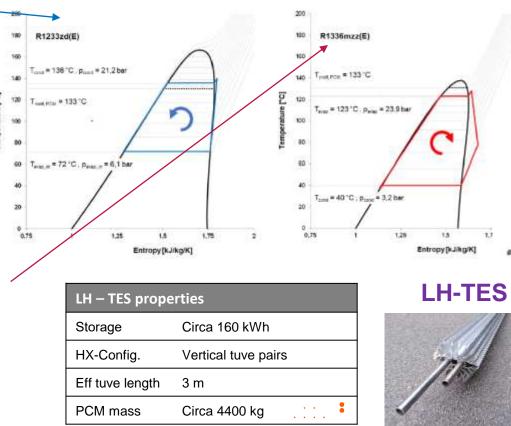

- DR12 (R-1336mzz(E)) is the selected refrigerant
- Optimized performance for 133°C source heat temperature

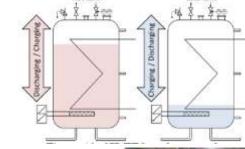
Viking Heat Engines compressor selected

- Pistón expander with 15.5 kW_{el} nominal power output
- Good part load operation and able to work with HFO
- Tested with 4-9 kW_{el} el for ΔP between 12-19 bar

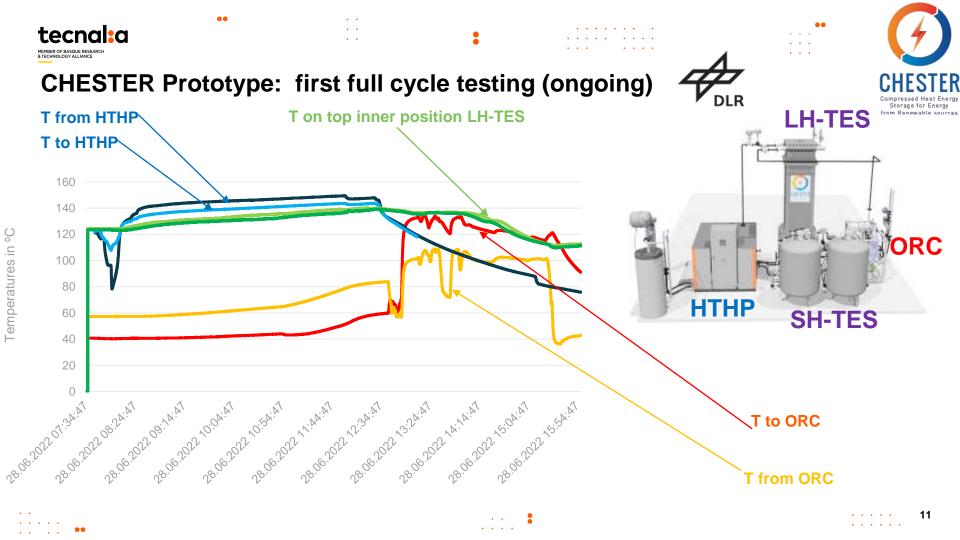
Refrigerant	ΔP (bar)	Power (Relative to	
		R245fa)	
R1234ze(Z)	18.79	1.08	
R124	31.46	1.51	
R236ea	22.03	1.23	
R245fa	18.07	1	
R600	20.04	1.12	
R600a	25.36	1.23	
RE 245cb2	<u>20.53</u>	1.32	
DR-12	20.95	1.42	- A
HFO-1336mzz(Z)	10.41	1.08	
R1233zd(E)	14.67	0.51	
R1234yf	**	0.74	






CHESTER Prototype: The final experimental set up ^[2]

...



CHESTER
 C

tecnal:a

Conclusions

- Flexible CHESTER Storage system is able to store heat and power.
- The individual components of the system been tested individually:
 - 15kW_{el} HTHP with R1233zd(E). COP_H between 3,5..6,2 for ΔT_{LIFT} between 40 and 65 K
 - 160kWh PCM LH-TES with a storage density of circa 70 kWh/m³
 - 15kW_{el} ORC with R1336mZZ(E). Tested with ΔP=12-19 bar obtaining 4-9 kW_{el}
- The ongoing charge/discharge tests of the full scale lab system are the **first experimental proof of concept of the CHESTER system**

CHESTER Publications

[1] Trebilcock et al. Development of a Compressed Heat Energy Storage System Prototype

IIR Rankine 2020 Conference - Advances in Cooling, Heating and Power Generation

[2] Weller et al. Design, Build and Initial Testing of a Novel Energy Management System

Heat Powered Cycles (HPC) Conference Proceedings - 2021

