

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 956059

SUSTAINABLE PLACES 2022

Transforming the server room into a sustainable micro cloud

ECO-Qube

Artificial-Intelligence-Augmented Cooling System for Small Data Centres

ecoqube

European Green Deal

- no net emissions of greenhouse gases by 2050
- economic growth decoupled from resource use
- no person and no place left behind

Data centers are responsible for 2-3% of global electrical power consumption, expected to rise to 4-6% by 2022.

a climate-neutral Europe

Challenge & state of the art

Score value	Volume / day / site	Criticality (availability of data or site)	Key for volume/day/site
6	100 TB+ (10 Gbps+)	0 downtime/extreme business risks	6
5	10-100 TB (1-10 Gbps)	few seconds/ high risks	5
4	1TB-10 TB (0.1-1Gbps)	few minutes / moderate risks	4
3	100-1,000 GB (10-100 Mbps)	few hours / low risks	3
2	10-100 GB (1-10 Mbps)	few days / little risk	1
1	10 GB (1 Mbps)	irrelevant / no risk	

Uptime Institute Intelligence, 2021

Emerging digital trends – from artificial intelligence (AI) to augmented reality (AR), and 5G to the Internet of Things (IoT) - require lower latency, wide band connection and consequently forcing data centres to be located closer to end users.

*UptimeInstitute UI Intelligence Report 48: Demand and speculation fuel edge buildout

UptimeInstitute INTELLIGENCE

Edge workloads by latency, criticality and daily data volume

Evolution of the market

Challenges of edge computing systems:

- We are not listening the data centers!
- All subsystems in data centers act individually (IT, cooling, power)!
- There is no holistic approach (hardware software)!
- Most of the existing technologies are designed for hyperscalers/cloud!

Future of data centre infrastructure management systems: ECO-Qube!

 $PUE = E_{DC}/E_{IT}$

 $ERF = E_{Reuse}/E_{DC}$

$$REF = E_{Ren}/E_{DC}$$

$$REF = \frac{\sum_{i=1}^{n} (E_{DC \ grid - used \ i} \cdot \frac{E_{ren \ i}}{E_{tot \ i}} + E_{DC \ ren \ onsite \ i}}{\sum_{i=1}^{n} E_{DCi}}$$

$$PES = \frac{\sum_{i=1}^{n} [(E_{DCi} + E_{OthDCi})_{bas} - (E_{DCi} + E_{DCi})_{bas}}{\sum_{i=1}^{n} (E_{DCi} + E_{OthDCi})_{bas}}$$

$$CO_{2}Savings = \frac{\sum_{i=1}^{n} [(CO2_{ei} + CO2_{Othi})_{bas} - (CO2)]}{\sum_{i=1}^{n} (CO2_{ei} + CO2_{Othi})}$$

$$CO_2Savings = \left[1 - \frac{CO2_{current\Delta t}}{CO2_{baseline_adjusted\Delta t}}\right]$$

Work per unit of energy = bops / Energy Consumption (W) * CPU Utilization

 $+ E_{DC ren cert i})$

E_{OthDCi})_{cur}]

 $2_{ei} + CO2_{Othi})_{cur}$] i)bas

* 100%

Environmental Data Agent

Data Center

ECO-Qube

10

ECO-Qube

- Empa's energy research platform 'NEST' is the ideal micro-grid
- At NEST, new technologies, materials and systems are tested, researched, further developed and validated under real conditions

*Photographer: Roman Keller

- OCP ORV2 > EDGE (cooling + containment)
- Open source hardware for open science
- Customized refurbished rack compatible with the EU Circular Economy Action Plan

Zonal Cooling Concept (ZCC)

High temperature grid (HTE)

- Static
- Temperature High: 65 °C 90 °C
- Temperature Low: 45 °C 50 °C

Medium temperature grid (MTE)

- Static
- Temperature High: 35 °C 38 °C
- Temperature Low: 25 °C 28 °C

Low temperature grid (NTE)

- Static
- Temperature High: 14 °C 28 °C
- Temperature Low: 7 °C 12 °C

	65NT_ULK02_P890	Low temperature grid
2	65NT_ULK02_P891	Medium temperature grid
;	65NT_ELM04_P820	Emergency Grid
ł	65NT_ELM04_P822	Emergency Grid

High temperature grid (HTE)

- Static
- Temperature High: 65 °C 90 °C
- Temperature Low: 45 °C 50 °C

Medium temperature grid (MTE)

- Static
- Temperature High: 35 °C 38 °C
- Temperature Low: 25 °C 28 °C

Low temperature grid (NTE)

- Static
- Temperature High: 14 °C 28 °C
- Temperature Low: 7 °C 12 °C

Table 3.1

2021 Thermal Guidelines for Liquid Cooling

ign	Facility Water Supply Temperature, °C (°F) ^a	
condary/ plemental acilities		
ide economizer	17 (62.6)	
ling tower)	27 (80.6)	
hiller or	32 (89.6)	
heating system	40 (104)	
1	45 (113)	
neating system	>45 (>113)	

- Lower PUE
- Easier and efficient to use waste heat

Founded to minimize carbon footprint of IT infrastructure Establishing sustainable data centres for agriculture environments Waste heat of the datacentres turned into a useful heating source for green houses

19

Low IT load 25 kW /150 kW PUE 1,12 > 22 kW IT ERF 85% > 21,25 kW

Medium IT load 40 kW /150 kW PUE 1,08 > 37 kW IT ERF 90% > 36 kW

ECO-Qube consortium

www.eco-qube.eu

ECO-Qube newspaper

"This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 956059"

cagatay.yilmaz@lande.com.tr