

iPredict. A predictive maintenance tool for heating, ventilation, and air conditioning (HVAC) equipment using artificial intelligence (AI)

Dr. José L. Castro Aguilar

jose.castro@eurecat.org

www.linkedin.com/in/josecastroaguilar

- About me
- Eurecat
- Sphere project
- iPredict
- Architecture
- Italian Pilot (sensors & meters)
- Weather station
- iPredict daily tasks
- Initial results
- Conclusions

- Studies in Communications and Electronic **Engineering** in Spain and United Kingdom
- Worked in Information Technology (IT) in Spain, United Kingdom, France, Germany, Sweden and Australia
- PhD in energy efficiency and simulations in buildings (Physics) at the University of Technology Sydney (UTS) in Australia
- **Postdoctoral** position at **Fraunhofer USA Center for Sustainable Energy Systems (CSE)** in Boston (USA)
- Data Scientist in energy efficiency in buildings
- Researcher at the Applied Artificial Intelligence Unit at Eurecat

Sphere project

- Sphere project is a Horizon 2020 project funded by the European Commission. <u>https://sphere-project.eu/</u>
- SPHERE project aims to provide a Building information modelling (BIM) based Digital Twin Platform to optimise the building lifecycle, reduce costs, and improve energy efficiency in residential and office buildings
- Consortium is composed by 17 partners from 9 different EU countries, consisting of multipurpose SME technology leaders as well as software tool providers and expert researchers

iPredict is one of the software technologies in the **Sphere** project. The scope is the **use**, **operation** and **maintenance** of the building.

What is the purpose/goal for iPredict?

- Enable predictive maintenance of HVAC equipment using real time data and machine learning algorithms
- Reduce downtimes, loss of comfort and/or loss of efficiency

How does [iPredict] achieve these goals?

- Create a data-driven model using data from sensors (temperatures, humidity, setpoints, operation status/mode), weather data and electricity and thermal energy consumption
- Predict energy consumption using historical data
- Detect abnormal energy consumption in heating and cooling systems
- Send notifications to facility managers through a Computerized Maintenance Management System (CMMS)/ SPHERE platform

DE5 - ITALIAN PILOT

Italian pilot

3-story building in Italy, an office on the ground floor and two apartments in each floor

Floor plans

P0 - Ground Floor

P1 - 1st Floor

SPHERE - H2020 G.A. 820805

SPHERE

BIM DIGITAL TWIN ENVIRONME

iPredict

Sensors & meters

Outdoor Temperature sensor <u>Variables</u>: Temperature in °Celsius <u>Where</u>: Installed outside the building <u>Total:</u> 1

Thermal Energy meter (Kamstrup) <u>Variables</u>: Thermal Energy Consumption kWh-th <u>Where</u>: Installed on the pipes (Supply & Return heating water circuit), 4 for radiant floor heating in the ground floor and 2nd floor & 2 for radiators in the 1st floor <u>Total</u>: 6

Electric Energy meter (Circutor) <u>Variables</u>: Electrical HVAC Consumption kWh-el <u>Where</u>: Installed in the outdoor unit main electric supply Total: 5

Temperature and relative humidity sensor <u>Variables</u>: Temperature in °Celsius and relative humidity (%) <u>Where</u>: Installed inside each room in each apartment (2x3x4), and 2x4 in the office <u>Total</u>: 32

Variables in indoor HVAC units <u>Variables</u>: Indoor temperature, Setpoint temperature, Operation Status (ON/OFF) and Operation Mode Cool/Dry/Fan/Auto/Heat <u>Where</u>: Installed inside each split in each apartment on 1st Floor (4x3x2) and 4x4 in the office <u>Total</u>: 40

Weather station

Graph Table

July 25, 2022

Time	Temperature	Dew Point	Humidity	Wind	Speed	Gust	Pressure	Precip. Rate.	Precip. Accum.	UV	Solar
12:04 AM	27.0 °C	16.3 °C	52 %	West	3.4 km/h	4.4 km/h	1,012.53 hPa	0.00 mm	0.00 mm	0	0 w/m²
12:09 AM	27.1 °C	16.4 °C	52 %	West	3.2 km/h	4.1 km/h	1,012.43 hPa	0.00 mm	0.00 mm	0	0 w/m²
12:14 AM	27.3 °C	16.4 °C	52 %	wsw	2.3 km/h	3.0 km/h	1,012.33 hPa	0.00 mm	0.00 mm	0	0 w/m²
12:19 AM	26.8 °C	16.6 °C	54 %	wsw	4.0 km/h	5.2 km/h	1,012.33 hPa	0.00 mm	0.00 mm	0	0 w/m²
12:24 AM	26.0 °C	16.4 °C	55 %	SW	2.6 km/h	3.6 km/h	1,012.43 hPa	0.00 mm	0.00 mm	0	0 w/m²
12:29 AM	25.8 °C	16.4 °C	56 %	WSW	2.4 km/h	3.0 km/h	1,012.33 hPa	0.00 mm	0.00 mm	0	0 w/m²
12:34 AM	25.7 °C	16.2 °C	56 %	SW	2.4 km/h	2.7 km/h	1,012.33 hPa	0.00 mm	0.00 mm	0	0 w/m²
12:39 AM	25.4 °C	16.3 °C	57 %	SW	3.2 km/h	3.5 km/h	1,012.43 hPa	0.00 mm	0.00 mm	0	0 w/m ²

iPredict daily tasks

4. Run the prediction algorithm with existing model and clean data (4+1) to predict electric & thermal energy

Office	EMR01_00	EME01_00	EMD01_00	TEC01_00	TMR01_00	TME01_00	TMD01_00	DateTime
	11.34	11.35	-0.1	NaN	NaN	NaN	NaN	2022-08-21
Alfa	EMR01_00	EME01_00	EMD01_00	TEC01_00	TMR01_00	TME01_00	TMD01_00	DateTime
	0.82	1.03	-25.5	NaN	NaN	NaN	NaN	2022-08-21
Bravo	EMR01_00	EME01_00	EMD01_00	TEC01_00	TMR01_00	TME01_00	TMD01_00	DateTime
	2.96	3.2	-7.9	NaN	NaN	NaN	NaN	2022-08-21
Charlie	EMR01_00 0.32	EME01_00 0.2	EMD01_00 37.5	TEC01_00 NaN	TMR01_00 NaN	TME01_00 NaN	TMD01_00	DateTime
Delta	EMR01_00 1.46	EME01_00 1.19	EMD01_00 18.5	TEC01_00 NaN	TMR01_00 NaN	TME01_00 NaN	ті	electrical

5. Calculate deviation between real and predicted energy consumption

iPredict daily tasks

Initial results

- Real and predicted energy consumption (kWh) and deviation (%) from August 16th to August 31st ٠
- Algorithm trained from August 1st until the day before of the prediction ٠

Real and Predicted Energy (kWh) and Deviation (%) for apartment Alfa

Initial results

- Real and predicted energy consumption (kWh) and deviation (%) from August 16th to August 31st
- Algorithm trained from August 1st until the day before of the prediction

Conclusions

- After stakeholder interviews performed in Sphere, a predictive maintenance tool is a desired functionality for a Building Digital Twin
- The tool follows a data-driven approach and uses machine learning algorithms to predict energy consumption
- Detecting abnormal consumption due to malfunction/operation in HVAC can save energy and reduce CO₂ emissions
- If deviation/real energy consumption is higher than predicted an alert/notifications is sent automatically to the Facility Manager and IMAN maintenance tool
- Data-driven models are becoming important due to the increased availability of data and progress in internet of things (IoT) sensors and machine learning algorithms
- Initial results during August showed better predictions in the apartment they used HVAC more often
- Next steps are to improve accuracy of energy predictions with:
 - More days and weeks of sensors and meters data to train the algorithm
 - Better selection of the variables that are most relevant among the available sensor data
 - Better selection of machine learning algorithm for this case

This project has received funding from the H2020 programme under Grant Agreement No. 820805

Thank you for your attention

Dr. José L. Castro Aguilar jose.castro@eurecat.org www.linkedin.com/in/josecastroaguilar