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Overview for today:

A well-known gap exists between perceptions of how effective DR should be and the practical reality
as observed in field trials and demonstrations. For a wider roll-out of DR, which unknown/varying
participation and an uncertainty gap in assumptions: how can a system operator or aggregator
effectively measure and forecast residential DR participation in a meaningful way, when planning or

optimizing an economic dispatch?
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Demand Response (Commercial)

Better use of renewables + less
reliance on expensive peaking units
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Demand Response (Residential)
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Renewable Energy for self-sustAinable island CommuniTies

« H2020 funded project, Jan 2019 - Dec 2023

 LC-SC3-ES-4-2018-2020 (Decarbonising energy
systems of geographical Islands )

« 10 million budget, 23 partners from industry, energy
authorities, universities and research institutes
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Demand Response

‘Demand response (DR) provides an opportunity for consumers to
play a significant role in the operation of the electric grid by reducing
or shifting their electricity usage during peak periods in response to
time-based tariffs or other forms of financial incentives’

‘The analysis presented identifies how expectations about building
occupants and their behaviours are built into the DR scenarios (to be
tested during the project demonstrations). Initial findings suggest
that building occupants’ energy use practices and routines may
be different from those expectations.’

Recommendations in scenarios with active occupant responses

Include: prepare the engaghe_ment prope_rly, use peer-to-peer

approaches, training, coaching trajectories, engagement of

occupants in identifying the ‘right’ message, format and timing to

motivate their active |toart|C|pat|on considering that occupants

ghemsel\t/es are best able to tell what works for them and what
oes not.
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Mind the gap when e
implementing technologies sumacar
intended to reduce or fourra sgep

©SAGE

shift energy consumption
in blocks-of-buildings

Sylvia Breukers' @, Tracey Crosbie” and
Luc van Summeren®

Abstract

If the designers of technologies intended to reduce or shift energy consumption are not sensitive
to how people live and work in buildings, a gap occurs between the expected and actual per-
formance of those technologies. This paper explores this problem using the concepts of ‘design
logic' (designers’ ideas, values, and user re, ) and the ‘user logic' (related in
this case to how building occupants currently live and work in a building). The research presented

unpacks the ‘design logic’ embedded in DR approaches planned for implementation at four blocks
of buildings in a Horizon 2020 funded project, called “Demand Response in Blocks of Buildings™
(DR-BoB). It discusses how the ‘user logic’ may differ from the ‘design logic' and the potential
impact of this on the performance of the technologies being implemented to reduce or shift
energy consumption. The data analysed includes technical working documents describing the
implementation scenarios of DR at four pilot sites, interviews and workshops conducted with the
project team and building occupants during the first phases of the project. The analysis presented
identifies how expectations about building occupants and their behaviours are built into the DR
scenarios (to be tested during the project demonstrations). Initial findings suggest that building
occupants’ energy use practices and routines may be different from those expectations. The
paper illustrates how the concepts of ‘design logic' and ‘user logic’ can be used to identify
mismatches before technologies are implemented. The paper concludes with recommendations
for improving the design and implementation of DR.
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Aggregated DR: How to model user response?
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Adaptive framework for DR user response

‘The ‘design logic’ should

contain an understanding of

the ‘user logic’ and in doing

so consider the values,
preferences, intentions, and "+
use practices of the g’
expected users of a given
technology in its specific
context.’

User Behaviour Models & Statistics

Measure
responses against
assumptions &
refine the design

-

The realised design

logic must forecast Share
responses within " - )

Conﬂdence mtervals igure 1. World of designers and users connected via script terminology'* (p.224).
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User Behavioral Models

Discrete Markov Chains: probability of user (or load) moving between specific states of responding to

specific events is stochastic:
Succeeding State O
Sl Sz 53 Py Piz
.. ) ] . TS 0 P 0
Steady-state of Markov chain is a multinomial choice. S, {O . P%} P
§ Ss P31 Paz2 P33 D
Transition Matrix Transition Diagram

For appliance curtailment after DR event, load reduction can be modelled as Boolean indicator variable for
each appliance/load:
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[ disability ) Teaching ¢ ™ INVESTORS
A6 confident [-rEF ﬁ Excellence l{I I:J IN PEOPLE ‘ Gold

Framework &

Static models: Probability of curtailment during DR event =
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The exact evaluation f the Poisson and Binomial cumulative distrbution and inverse (quantl) functions may b too chalenging

or unnecessary for some applications, and simpler solutions (typically ob

Y applying

inequalities) may be desired in some situstions. Although Normal distribution approximations are easy to apply and potentiall
very accurate, error signs are typically unknown: error signs are typically known for exponential inequalitics at the expense of some
pessimism. In this paper, recent work describing universal inequalities relating the Normal and Binomial distribution functions is
extended to cover the Poisson distribution function; new quantile function inequalities are then obtained for both distributions.
Exponential bounds—which improve upon the Chernoff-Hoeffding inequalities by a factor of at least two—are also obtained for

both distributions.

1. Introduction

‘The Poisson and Binomial distributions are a good approx-
imation for many random phenomens in areas such as

cations and reliability as well as the
bmluglc.\l and managerial sciences (1, 2). Let Y ~ Poi(m) be
a Poisson distributed random variable having mean m >
0, and let PIY <k represent the cumulative distribution
function (CDF) of ¥ with nonnegative integer support k €
{0.1,..., 00}

Also, let the Rth quantiles of ¥ and X for R € (0,1) be
obtained from the functions Qp(m, R) and Qy(n, p, R):

Qp(mR) = minke N:P(Yski2Rl, (3
Qu(mp.R)= [mink e N:P{X<kl2R). ()

Due to numerical and complexity issues, evaluation of the
exponential and Binomial summations in (1) and (2) through
recursive operations is only practical for small values of the
input parameters (m or nip and k). Instead, a better solution is
to evaluate the CDFs directly through either their incomplete
Beta/Gamma function representations which can be approxi-
mated to high precision by continued fractions or asymptotic
[3]. With respect to the quantiles of the distribu-

PIY sk} = o
Similarly, let X ~ Bin(n, p) be a distributed ran-
dom variable with parameters 1 € {1, Yand p €

(0.1), and let P{X < K} represent the CDF of X for integer

support k € {0, 1,....m}:

¢ ¢ n i
Pix sk =3 (7) 0y ®

tions given by (3) and (4), no methods to exactly cvaluate
these functions without iterating the exponential/Binomial
sums—or alternately employing a search until the required
conditions are satisfied—seem to be known. Typically, a
binary search to determine the smallest k satisfying (3) or (4)
evaluating the respective CDF at each step would be a
better general solution, given some initial upper bound for

Previous Work on Statistics
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Towards efficient probabilistic scheduling guarantees for real-time systems subject
to random errors and random bursts of errors

Michael Short
Electronics & Control Group,
Teesside University,
Middlesbrough, UK.
e-mail: m.short@tees.ac.uk

1h: Realti ad systems
are often required to operate with prespecified levels of
reliability in harsh environments, which may lead to the
exposure of the system to random errors and random bursts of
errors. The classical fault-tolerant schedulability analysis in
such cases assumes a pseudo-periodic arrival of errors, and
does not effectively capture any underlying randomness or
burst characteristics. More modern approaches employ much
richer stochastic error models to capture these behaviors, but
this is at the expense of greatly increased complexity. In this
paper, we develop a quantile-based approach to pi

Julidn Proenza
Systems, Robotics & Vision Research Group,
Universitat de les Illes Balears,
Palma de Mallorca, Spain.
e-mail: julian.proenza@uib.es

or other EMI fault, leading to an erroneous state and the
abortion of an executing job by a CPU or a transmitting
message frame in a network. For crucial systems, the use of
fault-tolerance (mainly in the form of temporal redundancy)
is required such that the aborted job or message can be re-
executed or re-transmitted [3][4). Such a form of redundancy
requires some temporal ‘slack capacity” in the schedule; how
much slack is required to be allocated depends upon many
factors including the level of criticality in the service the
system provides, the task/message parameters and

schedulability analysis in a bid to improve efficiency whilst still
retaining a rich stochastic error model capturing random
errors and random bursts of errors. Our principal
contribution is the derivation of a simple closed-form
expression that tightly bounds the number of errors that a
system must be able to tolerate at any time subsequent to its
critical instant in order to achieve a specified level of
reliability. We apply this technique to develop an efficient *one-
shot" schedulability analysis for a simple fault-tolerant EDF
scheduler. The paper concludes that the proposed method is
capable of giving efficient probabilistic scheduling guarantees,
and may casily be coupled with more representative higher-
level job l'lll-rr models, giving rise to efficient analysis
for y-critical fault-tol real-time systems.

Keywords- Probalistic Schedulability Analysis; Error models;
Fault-Tolerance.

L. INTRODUCTION AND MOTIVATION

Real-ti and systems are
often required to operate with a pre-specified level of
reliability in harsh environments. In many cases they may be
subject to environmental hazards such as electromagnetic
interference (EMI) and other forms of radiation, and also to
excessive mechanical/electrical stresses. Exposure to hazards
such as this can induce random errors into a system, which —
if left uncorrected — may result in syslcm f:nlun:s [1)[2]. I

and the nature of the emror detection
and correction mechanisms employed by the system. If
insufficient slack is employed by a system to tolerate the
effects of the errors it experiences, then aborted jobs or
message frames will not be processed or delivered correctly
before their deadlines and system failures may occur. Clearly
then, a major factor that needs to be considered in the design
of fault-tolerant real-time systems is the frequency and
severity of the transient errors the system is likely to
experience. In addition to sporadic error arrivals which are
purely random and uncorrelated in nature, research has
shown that errors are very likely to occur in short transient
bursts (see [5-9] and the references therein). Therefore a
representative error model must have the ability to include
these types of bursty behavior within its domain of operation.
Although  some  approaches to  fault-tolerant
schedulability analysis employ models which capture these
behaviors, to date this has been at the expense of greatly
increased analysis complexity. In this paper, we develop a
quantile-based approach to probabilistic = schedulability
analysis in a bid to reduce complexity whilst still retaining a
rich stochastic eror model capturing random errors and
r.mdom bursts of errors. Our principal comnbuuon is the
ion of a simple closed-fc that tightly
bounds the number of errors that a system must be able to
tolerate at any time subsequent to the Synchronous Arrival
Sequence (SAS) of its tasks in order to achieve a specified

this paper we are
analysis of real-time CPU tasks and mcssa;.ﬁ which are

level of reliability. At the core of the technique is the use of a
Markov-Modulated Poisson Binomial (MMPB) process: the
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On binomial quantile and proportion bounds: With applications in
engineering and informatics

Michael Short
School of C: ;i ing and Teesside University, Middlesbrough, UK
ABSTRACT
The Binomial distribution is oﬂen used asa good appi for many in engineering, medical,
financial, and other app g discrete In many situati for the purp of risk
it may be required to estil and/or track the probability of of a i type of

discrete event from a data sample, and then use such an esllmale to predid outcomes from a larger sample. In
this article, very simple but very accurate formulae are denved to support such actions. Analytic formulae are
presented to tightly bound upper and lower of a B prop! to given confid levels, and to
tightly bound upper and lower estimates of a Binomial Quantile. Application to risk are shown
through synthetic and real-world examples, and accompanying analysis. It is argued that the formulae are simple
enough to be embedded directly in machine leaming and related analytics applications, and can also be
manipulated algebralcally to help analyze random behavms in algomhms The article concludes that the

presented expressions are also useful to support decisions in ions in which speciali fty may not be
available.
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Binomial Proportion Estimation

Extending the normal approximation and Wald-Laplace interval concepts, Michael Short has shown that inequalities on the approximation error between the binomial
distribution and the normal distribution can be used to accurately bracket the estimate of the confidence interval around p :[°!

k+ Cr1 _, nk — k2 + Cran — Crsk + Cr4 k+ Cur tz nk — k2 + Cyan — Cysk + Cya
n + 22 n(n + 2%)? n + 22 n(n + 22)?

SPs

where ;3 is again the (unknown) proportion of successes in a Bernoulli trial process, measured with 7 trials yielding k successes, z is the 1 — % quantile of a standard

normal distribution (i.e., the probit) corresponding to the target error rate «, and the constants Cr1, Crs, Cr3, Cr4, Cy1, Cua, Cys and Cyy are simple algebraic
functions of 2.1%! For a fixed (and hence 2), the above inequalities give easily computed one- or two-sided intervals which bracket the exact binomial upper and lower
confidence limits corresponding to the error rate .
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Binomial Quantile Estimation

Similarly for quantiles:

Lower: Upper:

2

C
np + C\/np(l — D) +?

Qu(n,p, (1~ R)) < -

CZ
np—Cx/np(l—p)———ll Qu(n,p,R) <

C = d~1(R)? C = d~1(R)?
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Adaptive framework for DR user response

_ User Behaviour Models < Statistics
This leads to extremely

simple algebraic

expressions to track the o
confidence interval around h -
an unknown proportion
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Figure |. World of designers and users connected via script terminology'* (p.224).
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Proportion Tracking (Discrete Population)
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Response Forecast (Discrete Population)
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Next Steps...

REA(ST

Revisit data from DR-BoB Demonstrations;

Analyse data from REACT Demonstrations;

Reuvisit work on aggregated DR (utility perspective);
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Heuristic Scheduling of Multiple Smart Home
Appliances: Utility Planning Perspective

Chris Ogwumike, Michael Short and Fathi Abugchem
School of Science and Engineering, Teesside University, Middleborough, United Kingdom
C.Ogwumike(@tees.ac.uk, M.Short@tees.ac.uk, F. Abugchem@tees.ac.uk

Abstract

Demand Side \llugﬂ-rnl (DSM) approaches in their cnergy
networks to help compensate for mrnud levels of uncertainty
arising from renewable energy production. Demand Response
(DR) is one such approach. DR aims to encourage shifts in
residential load by using pricing signals and dynamic tariff
mechanisms which are provided in reak-time by the utility
company. The goal is to shift energy consumption patterns to off-
peak times and hence reduce the Peak-to-Average Ratio (PAR) of
the daily clectricity demand. In this paper, the effects of multiple
houscholds using a fast heuristic algorithm for scheduling smart
appliances is simulated from a utility planning perspective. It

of the existing infrastructure network while reducing
the cost of grid upgrades.

Our main contribution in this paper is to provide an initial
exploration of the extent to which a heuristic algorithm for
household load scheduling can help shift aggregated demand in
response to utility DR events affecting the wider gnid. Heunstic
scheduling algorithms can be used to solve residential energy
cost optimization problems; they can very quickly find ‘good”
solutions. An exhaustive search algorithm, on the other hand,

can find the best solution: but it may take large amounts of

1 effort to do so. We have previously described an

explores the aggregated response of the de- ized heuristic
algorithms to events signaled by the utility, when the primary
focus of each heuristic is upon minimization of end-user economic
costs. The performance of the heuristic algorithm for DR events
under mormal and stringent conditions is explored under
simulation. Results confirm that the aggregated demand can
potentially respond to DR signals, although the choice of price
signals plays a major role in the depth and nature of the response
and requires further investigation.

Keywords—Electric  Utility, Demand Response, Heuristic
algorithm, Utility planning, Appliance scheduling.

1 INTRODUCTION
lnsumuem investment in the ageing elccmcl(y
along with of di

renewable resources has made it more difficult 1o both meet
mcreasmg system loads and match elcunul) suppl) wuh

efficient h‘.unalu. optimizer whuh is simple mough o hu
s d on a small emb o
schedule flable smart home 1 131 (4) The
principal goal of the heunistic is to minimize a resident’s
electricity bill in the presence of varying uulity price signals.
Consequently, the utility company could adjust the pricing
signals and energy capacity provided in each timeslots to help
plan their actions. Hence, this decision making process between
consumers and the utility company could be seen as a
communication pathway aimed at achieving demand response.

The motivation for this work is as follows. Varnious DR
techniques such as, peak load curtailment for unexpected DR
events [5] [6], direct load control (7] and price responsive
demand [8] have all been employed in the past few years for
n:du‘.mg peak demand. However, such techniques have
in terms of the required ability of the utility

mand [1]. This has placed an
uulme; o incorporate Demand Side Mnmgcmnl (DSM)
approaches in their energy networks to reduce peak loads and
match capacity of supply with demand. From the consumer
side, scheduling of controllable loads (such as smart appliances)
with the help of energy management decision support systems
can help to achieve DSM in general, and also can assist with
Demand Response (DR) for event handling. Additional
mechanisms such as ancillary services (AS) [2] are also needed
to regulate supply and demand and also respond to
contingencies, for example during a sudden loss of transmission
of electric power from utilities to the consumers. AS has
potential benefits for consumer demand response participation
Such benefits mdmk the availability of reliable resources to
system op lity to manage y events as a
result of of bl 1o the
grid (2] etc. These are aimed at enhancing energy system
efficiency and helps to prevent grid instability. In conjunction,
utility companies can ensure proper planmng‘ implementation
and monitoring of DR activities designed for efficient

(g

LEADER

company to control the residential smart applmnccs u-mul«.ly
As a result, utilities are adopting incentive based mechanisms
to encourage residential customers to conserve energy and
reduce peak demand. They advertise dynamic pricing such as
Critical Peak Pricing (CPP) [9], Real ime pricing (RTP) [10-
12] Time of use pricing (TOUP) [13], etc. One of the bamers
to enabling a critical investigation to different pricing schemes
and their subsequent appraisal for use in future smart grid has

been the complexity of the residential load-scheduling problem,
which is l.mwn 1) bg NP-| hard [14). Therefore, the use of our
timal and V- head heuristic

opens a pathway for large-scall
of the impact of pricing schemes on residential DR. In this
paper, we begin to document such simulations on the behavior
of multiple instances of the algorithm in response to unexpected
events affecting the wider grid. Overall, our test results confirm
that the heunistic rapidly responds to DR \1gnal> and pfoducei
the desired from in
synchronicity, allhough the choice of price sngmh plays a
major role in the depth and nature of the response.
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