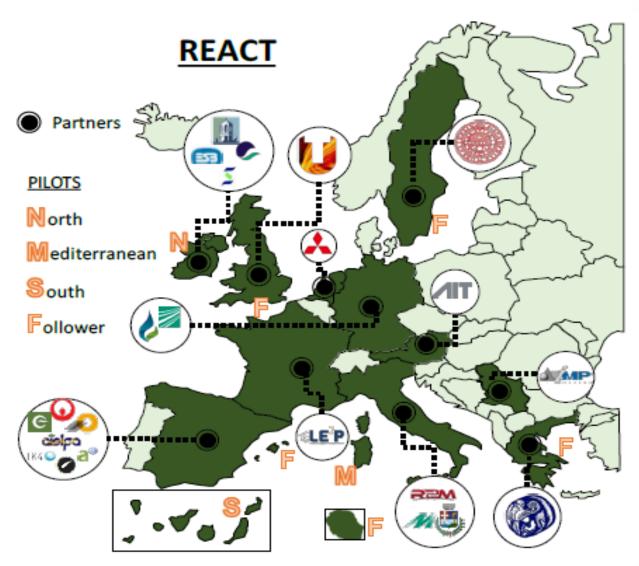


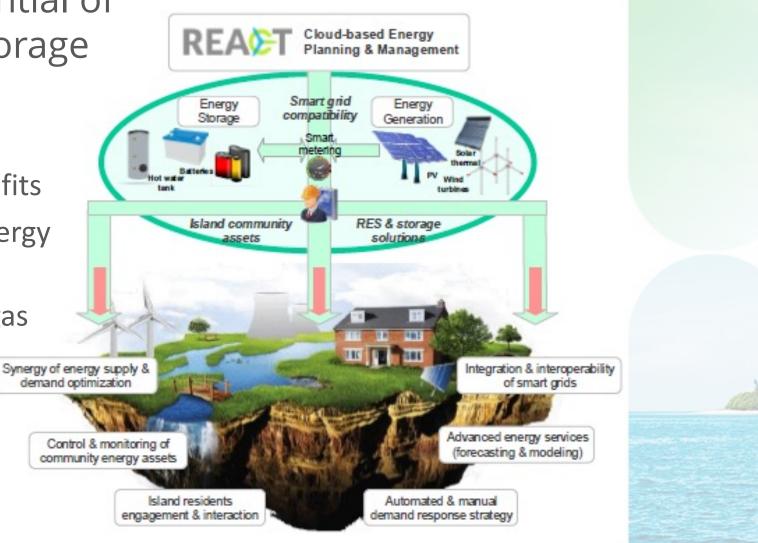
Informing an equitable transition to clean energy: results from a resident survey on three islands

Sep. 6 - Sep. 9, 2022 | Nice, France



This project has received funding from the H2020 programme under Grant Agreement No. 824395

Dana Abi Ghanem & Tracey Crosbie Teesside University


- H2020 funded project
- Jan 2019 June 2023
- LC-SC3-ES-4-2018-2020: Decarbonising energy systems of geographical Islands
- 10 million budget
- 23 partners industry, energy authorities universities and research institutes

REACT

- REACT aims to demonstrate potential of RES and energy storage on islands to
 - bring economic benefits
 - decarbonise local energy systems
 - reduce greenhouse gas emissions
 - improve air quality

REACT PILOT ISLANDS

La Graciosa - SPAIN

San Pietro - ITALY

Aran Isles - IRELAND

REACT FOLLOWER ISLANDS

WHY ISLANDS?

- The transmission of energy is costly & inefficient
 - Affects energy security & increases the energy costs
 - Energy costs up to 400% higher than those of the mainland
- Significant population fluctuations resulting in highly variable energy load profiles
 - Reliance on diesel powered energy generation
- Islands offer a great opportunity to become first adopters of innovative technologies and smart grid solutions because they can be independent from traditional grid constraints

Not merely an engineering problem!

How do we make sure smart grid solutions integrate well with people's normal <u>everyday life</u>?

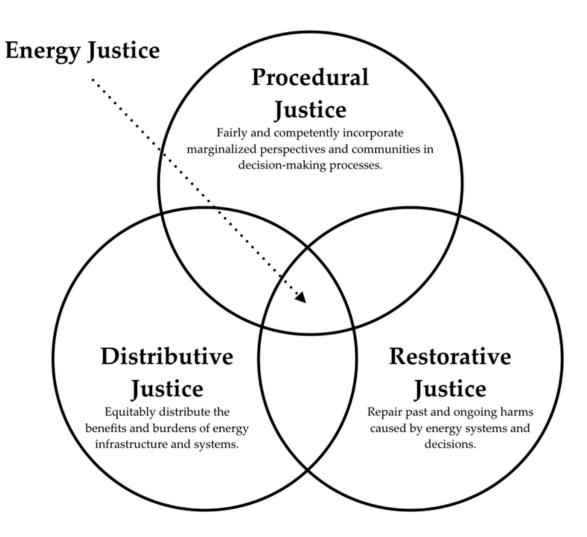
How will the smart grid solution affect people's <u>routines and</u> <u>lifestyles</u>?

Honey, I'm gonne be a bit late tonight... No EV Charging between 4-6PM

What changes in people's <u>comfort and convenience</u> are possible?

How <u>willing</u> are people to adjust their everyday routines?

DR and users


- Familiarity with the SG concept and DR important (Li *et al.*, 2017)
- Perceptions of what these technologies can and cannot do (Krishnamurti *et al.*, 2012) crucial for their long-term success

• Adverse social outcomes

- Disrupted household routines (Murtagh et al., 2014)
- Lack of choice and autonomy (Calver et al., 2022)
- Importance of contextual factors in demonstrations and deployment (Crawley et al, 2021)

Energy justice and DR in homes

Available via license: <u>CC BY 4.0</u>

Unequitable outcomes of SG and DR

Impacts

- Increased risk of fuel poverty among elderly & disabled (White et al., 2020) and risk of under-consumption (Calver & Simcock, 2021)
- Flexibility capital not equally distributed (who can offer it, when and at what price) (Powells & Fell, 2019)

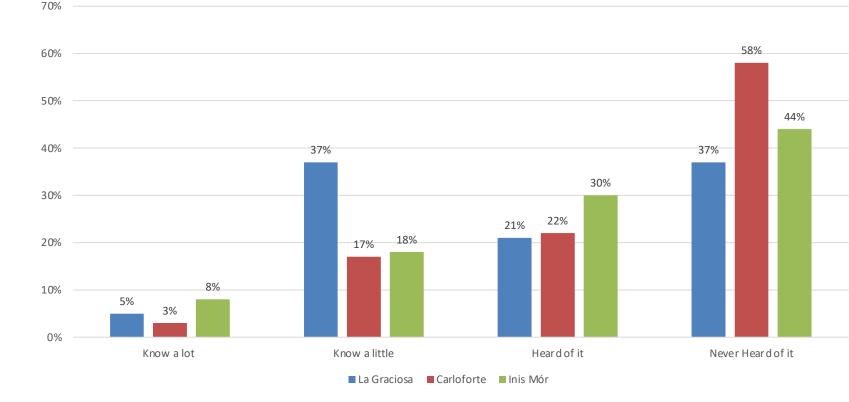
Process

- Limited user engagement in SM deployment (Jenkins et al., 2018)
- Lack of connectivity in poorer areas (Sovacool et al., 2019) and prepayment meters (Crosbie, 2004)

Barriers/intersections

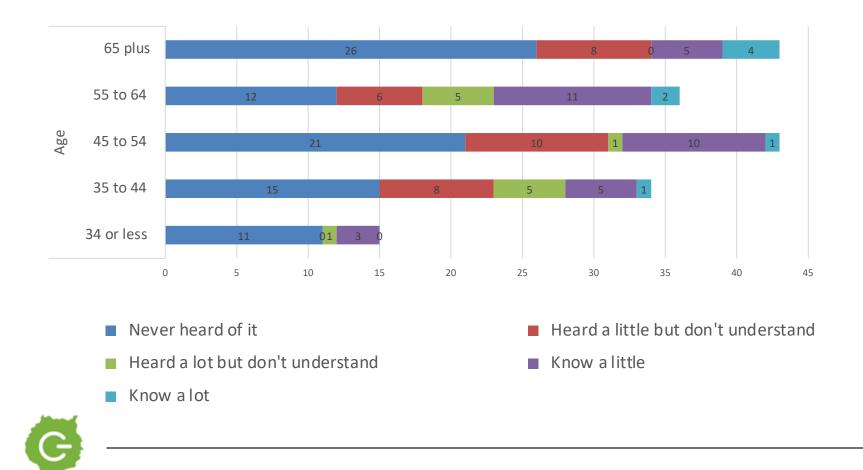
 Risk-averse behaviour (Marikyan et al., 2019) increasingly amongst disabled and vulnerable groups (de Chavez, 2018; Snell et al., 2015)

Methods


Data collection: survey questionnaire

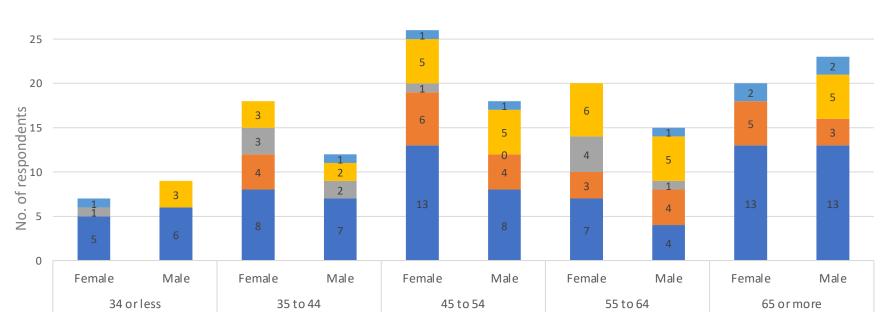
- One survey conducted in the three islands
- 31 questions
 - Caleta del Sebo in La Graciosa (Spain)
 - 21 surveys collected 13% of pop
 - Carloforte in San Pietro (Italy)
 - 77 surveys collected 3% of pop
 - Kilronan, Inis Mór one of the Aran Islands (Ireland)
 - 81 surveys were collected 35% of pop

Data analysis: using Generalised Linear models / regression analysis


Results Familiarity with the SG

In response to the
question "How familiar
were you with the
concept of smart grids
before this
questionnaire/before
being contacted by
REACT?

Results Factors influencing knowledge/familiarity with SG: Model 1: *Familiarity with SG ~ Age*


Comparing familiarity with the SG concept with age

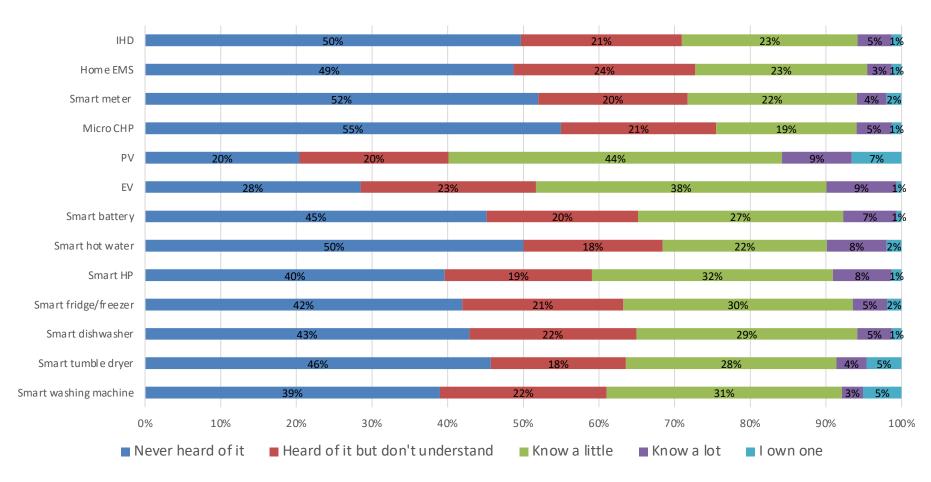
Older age groups **tend** to be less familiar with SG concept

(chi-sq.= 0.012)

50

Results Factors influencing knowledge/familiarity with SG: Model 2: *Familiarity with SG ~ Age + Gender*

Familiarity with the SG concept strongly related to age when controlling for gender


(chi-sq.= 0.008)

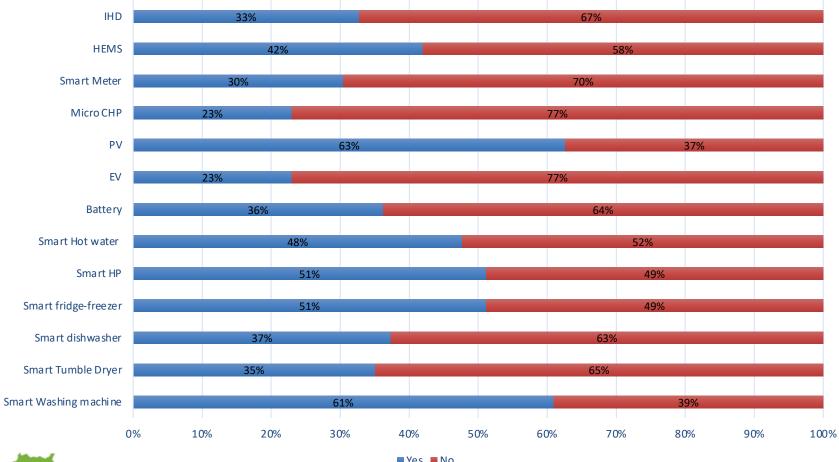
Never heard of it Heard a little but don't understand Heard a lot but don't understand Know a little Know a lot

30

Results Familiarity with DR technologies

Question "how familiar are you with the following technologies?"

Results

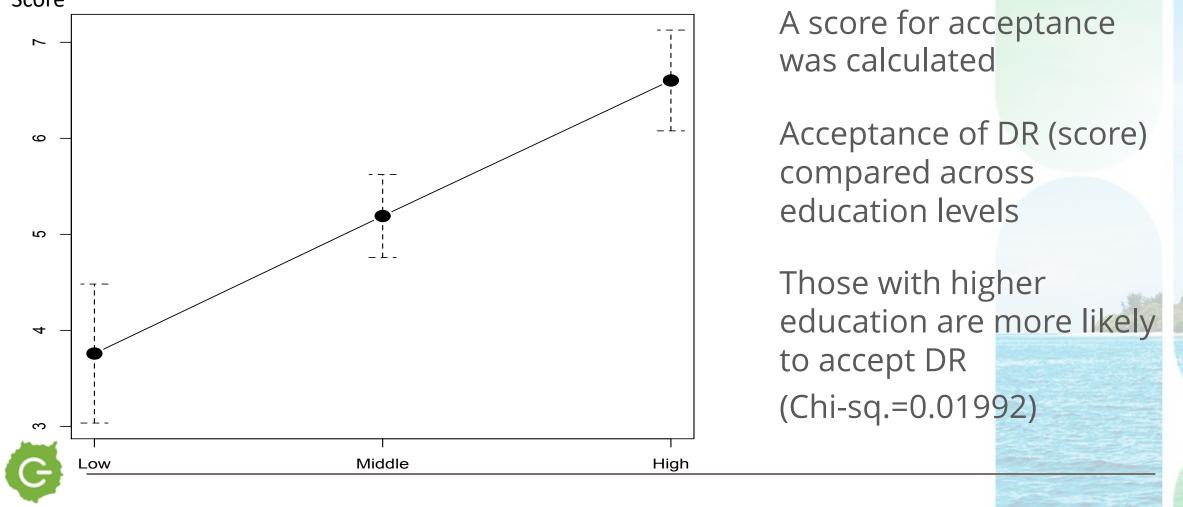

Factors influencing familiarity with DR technologies Model 3: *Familiarity with SG ~ Age*

Score 28 26 24 22 20 Т 18 16 35 to 44 34 or less 45 to 54 55 to 64 65 plus Knowledge of DR technologies across different age groups

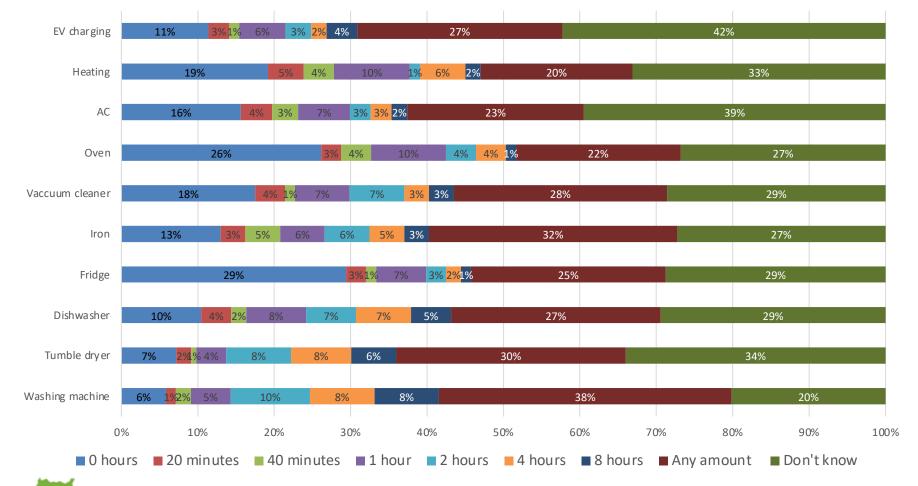
Older age groups less likely to know about DR technologies

```
(chi-sq.=0.0415)
```

Results **Acceptance of DR technologies**

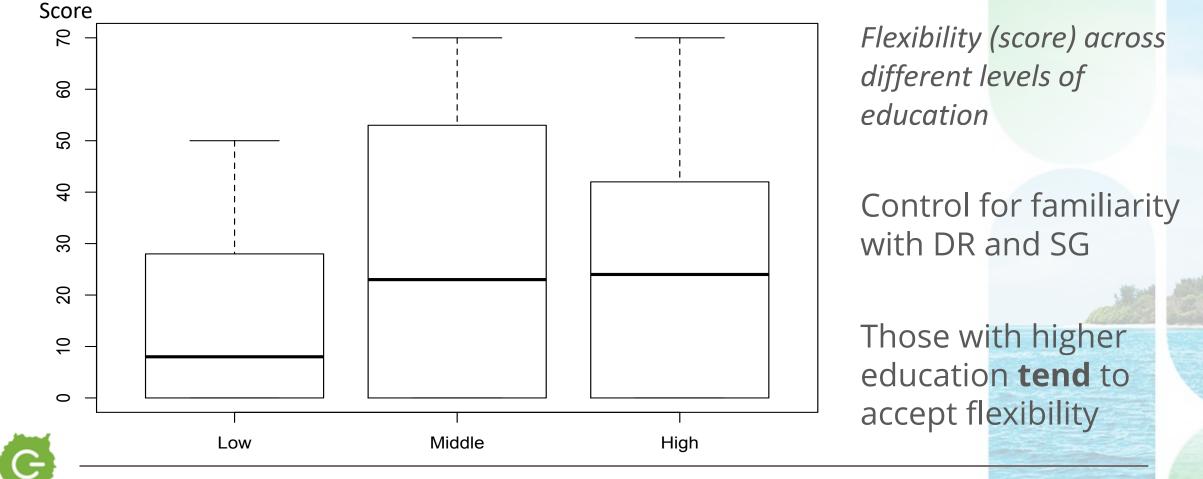


Question: "Which of the following appliances/systems would you like to use? (Please select all those that apply)"

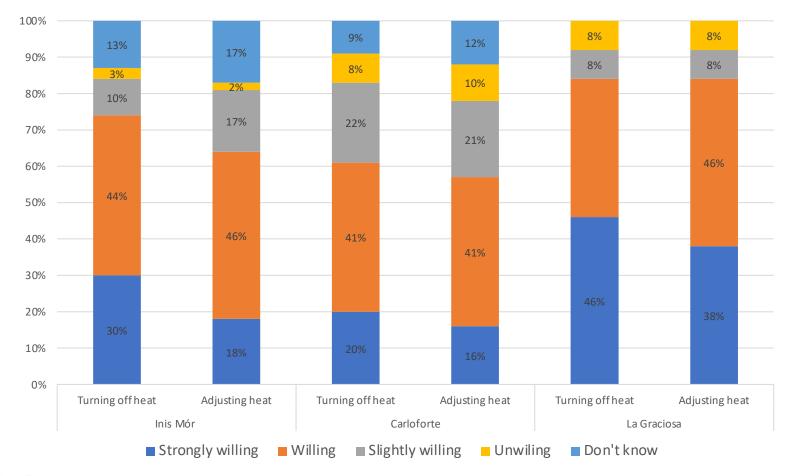


■Yes ■No

Results Factors influencing acceptance of DR technologies Model 4: Acceptance of DR ~ education



Results Modifying time of appliance use


Question: "How long are you willing to postpone the start of the following appliances in order to use cheap energy?

Results Model 5: Flexibility ~ *education* + *Familiarity with SG* + *Familiarity with DR technologies*

% of respondents

Results Flexibility and thermal comfort

Heating/cooling flexibility (turning off and adjusting temperature) across the three islands.

Results Model 6: Turn off heating/cooling ~ *Cost* + *Impact*

100% 90% 80% 70% % of respondents 60% 50% 40% 30% 20% 10% 0% High Low Medium Low Medium High Low Medium High Low Medium High €100-€150 €150-€200 €200 or more €100 or less ■ Not willing ■ Willing Strongly willing

Willingness to turn off heating/cooling

Willingness to <u>turn-off</u> <u>heating/cooling</u> compared across energy bill impact (low, medium, high) and reported cost

Willingness related to cost of energy (chi sq=0.11) and felt impact (chi sq=0.66).

Results Model 6: Modifying heating/cooling temp ~ *Cost* + *Impact*

100% 90% 80% 70% % of respondents 60% 50% 40% 30% 20% 10% 0% Lo w Medium High Low Medium High Low Medium High Medium High Low €100-€150 €100 or less €150-€200 €200 or more

Willingness to modify temperature of heating/cooling

Willingness to <u>modify</u> <u>temp. for heating/cooling</u> compared across energy bill impact and reported cost

Strong tendency between will to modify temp and cost (chi-sq= 0.02252)

■ Not willing ■ Willing ■ Strongly willing

Conclusions (1/2)

- Familiarity with DR technologies and familiarity with the SG concept is key to engaging with DR and solutions like REACT.
- Higher energy costs linked to increased willingness to change behaviour, suggesting important arguments to make for DR as an energy saving strategy or households.
- Marginalised individuals (older people, women and people with lower educational attainment) within society are the <u>less likely</u> to engage in and benefit from DR and SG initiatives.

What does this mean for DR (2/2)

- Restore: Efforts towards making DR corrective for fairness of energy services for society
 - Investment in marginalised/lower-income areas
- Distribute impacts fairly
 - Over-ride option and other design solutions to widen engagement
- Process fairly and transparently
 - Who is having their say?
 - Are people having a choice?
 - Are we reaching the ones who are most in need?
 - Do they understand what they're getting into?
- Recognise: DR and the SG can have inequitable and unjust outcomes in the energy transition

References

Li, R., Dane, G., Finck, C. & Zeiler, W. (2017). Are building users prepared for energy flexible buildings—A large-scale survey in the Netherlands. *Applied Energy*, 203, 623-634. <u>https://doi.org/10.1016/j.apenergy.2017.06.067</u>

Krishnamurti, T.; Schwartz, D.; Davis, A.; Fischhoff, B.; de Bruin, W.B.; Lave, L.; Wang, J. Preparing for smart grid technologies: A behavioral decision research approach to understanding consumer expectations about smart meters. *Energy Policy* **2012**, *41*, 790-797, doi:10.1016/j.enpol.2011.11.047.

Murtagh, N.; Gatersleben, B.; Uzzell, D. A qualitative study of perspectives on household and societal impacts of demand response. *Technology Analysis & Strategic Management* **2014**, *26*, 1131-1143, doi:10.1080/09537325.2014.974529.

Calver, P.; Mander, S.; Abi Ghanem, D. Low carbon system innovation through an energy justice lens: Exploring domestic heat pump adoption with direct load control in the United Kingdom. *Energy Research & Social Science* **2022**, *83*, 102299, <u>https://doi.org/10.1016/j.erss.2021.102299</u>.

Crawley, J.; Johnson, C.; Calver, P.; Fell, M. Demand response beyond the numbers: A critical reappraisal of flexibility in two United Kingdom field trials. Energy Research and Social Science **2021**, 75, doi:10.1016/j.erss.2021.102032.

Calver, P.; Simcock, N. Demand response and energy justice: A critical overview of ethical risks and opportunities within digital, decentralised, and decarbonised futures. *Energy Policy* **2021**, *151*, 112198, <u>https://doi.org/10.1016/j.enpol.2021.112198</u>.

Powells, G.; Fell, M.J. Flexibility capital and flexibility justice in smart energy systems. *Energy Research & Social Science* **2019**, *54*, 56-59, <u>https://doi.org/10.1016/j.erss.2019.03.015</u>.

Jenkins, K.; Sovacool, B.; Hielscher, S. The United Kingdom smart meter rollout through an energy justice lens. In *Transitions in Energy Efficiency and Demand the Emergence, Diffusion and Impact of Low-Carbon Innovation*, Jenkins, K., Hopkins, D., Eds.; Routledge: London, 2018; pp. 94-109.

Sovacool, B.K.; Lipson, M.M.; Chard, R. Temporality, vulnerability, and energy justice in household low carbon innovations. *Energy Policy* **2019**, *128*, 495-504, :<u>https://doi.org/10.1016/j.enpol.2019.01.010</u>.

Crosbie, T. (2009). The Utilities in Transition : Gazing through the IT window. *Flux*, 75, 16-26. <u>https://doi.org/10.3917/flux.075.0016</u>

Marikyan, D.; Papagiannidis, S.; Alamanos, E. A systematic review of the smart home literature: A user perspective. *Technological Forecasting and Social Change* **2019**, *138*, 139-154, <u>https://doi.org/10.1016/j.techfore.2018.08.015</u>

de Chavez, A.C. The triple-hit effect of disability and energy poverty: a qualitative case study of painful sickle cell disease and cold homes. In *Energy Poverty and Vulnerability: A Global Perspective*, Simcock, N., Thomson, H., Petrova, S., Bouzarovski, S., Eds.; Routledge: Abingdon, Oxon, 2018; pp. 169-187.

Snell, C.; Bevan, M.; Thomson, H. Justice, fuel poverty and disabled people in England. *Energy Research & Social Science* 2015, 10, 123-132, https://doi.org/10.1016/j.erss.2015.07.012.

THANK YOU FOR YOUR ATTENTION

Renewable Energy for Self-Sustainable Island Communities

This project has received funding from the H2020 programme under Grant Agreement No. 824395

