

SMART ISLAND ENERGY SYSTEMS

Stefano Barberis Rina Consulting S.p.A. Sustainable Places'19

Grant Agreement 731249

- To demonstrate a set of both technological and nontechnological solutions targeting the distribution grid to enable:
 - Demand response
 - smart grid functionalities
 - storage and energy system integration
- 3 large-scale demonstrators

- Island communities can be more easily engaged in the real-life testing of solutions aimed at solving important challenges impacting life on the island
- Constitute ideal candidates for demo activities requiring societal engagement & active residents' commitment.
- The 3 selected case studies:
 - characterised by high shares of RES
 - intend to demonstrate stable grid operation in the context of the adoption of energy storage solutions and/or the connection between the electricity network and other energy networks
 - intend to demonstrate smart integration of grid users from transport and mobility.

Why island locations?

- Each pilot brings:
 - Specific set of challenges
 - Technology options
 - Energy market conditions.
- The sites are therefore effectively representative of the majority of the EU energy markets and offer excellent demonstration settings which will deliver maximum impact in terms of replicability.

Demonstrator Specific Goals

Each case study represents an important energy challenge that is common to several locations in Europe, on islands as well on the mainland.

- Madeira is a total energy island, which means that it is not connected to any other landmass electrically.
- Orkney has some of the highest recorded levels of "fuel poverty" in the UK.
- Samsø's energy demand is very consistent as it is dominated by the demand from berthed yachts and associated tourism.

Overall Goals - Samsø

- To make better use of the green electricity produced on the island (minimize the electricity export).
- To make the Ballen marina more attractive for sailors, tourists, and the local citizens.
- To improve the quality of life in order to attract settlers.

- To install a battery system (BESS) to level out fluctuations in supply and demand and to test it.
- To install a PV power generation system at the Ballen marina.
- To cover 50% of the heating demand in the harbour master's office using PV electricity and a new heat pump.
- To develop and test an overall control system, which allows for dynamic market prices.
- To set up a new market model

Overall Goals - Orkney

- Alleviate fuel poverty in Orkney
- Maximising the productivity of the existing generation assets
- Support the rollout of electric vehicles
- Transform a semi-smart grid system (management of generation only) into a full smart system (management of generation and demand)
- Use existing grid infrastructure and integrating new communications and control systems, new control systems, new controllable energy demand for heat and transport

- Roll out of smart metering systems generating a significant quantity of data which will feed into a new control system enabling smartening of the grid.
- This, coupled with demand side management techniques (including market mechanisms such as dynamic pricing) and storage technologies, will help to:
 - address the increasing strain on the grid
 - facilitate significant

additional solar capacity

in the future – taking advantage of the island's natural renewable resources.

- Each case study is representative of an important energy challenge common to several locations in Europe, on islands as well on mainland.
- Orkney Islands and Samsø are electrically connected to the mainland network and can therefore be representative of smart grids located on the mainland as well
- Madeira is the only case of a total energy island, not connected to the mainland network.
- Mutual learning approaches
- Replication (DAFNI/Greek islands)

Overall concept, objectives and technologies

Overall structure of the workplan

Project Objectives

- Develop innovative management structure
- Increase local RES exploitation also thanks to storage, electric vehicles and smart H&C
- Promote local business models and contractual arrangements
- Guarantee a reliable and secure RES based grid
- Develop a multi-criteria decision tool for the ranking (strengths and weaknesses) of solutions
- Active participation in BRIDGE initiative

Key performances indicators

sm:

Most Appropriate DR Services for each demonstrator

OVO Components & Load Controller

Predictive Algorithms

Development of enabling technologies

VNET

Icons courtesy of https://cons8.com

Wind Farm

......

VSCON SOTN

WIND TURBIN

ROUTER

Final design and starting of deployment/implementation

sm

Reference energy simulation models for the three pilot islands

Communication and Dissemination Plan

Thank you for your kind attention!

Stefano Barberis Rina Consulting S.p.A. Stefano.barberis@rina.org