Assessing the energy efficiency & embodied energy of insulation materials in the UK housing stock

Adnan Hossain, PhD Student BRE Center for Sustainable Construction School of Engineering Cardiff University, UK

Professor Monjur Mourshed Professor of Sustainable Engineering BRE Center for Sustainable Construction School of Engineering Cardiff University, UK

The UK housing energy usage

- Energy consumption by sector in the UK.
- Adapted from: (DBEIS, 2017)

The UK Dwelling stock: Age

- 80% of the current UK housing stock were built before 1980 (DBEIS, 2017).
- Thus, they have poor energy performance.

Figure: Date of construction of existing housing stock in UK Adapted from: (DBEIS, 2017)

Building Life Cycle Energy

TAINABLE

Importance of embodied energy

The impact of embodied energy depends on the usage of operational energy. As in recent time, the operational energy has been reduced in dwellings the relative impact of embodied energy has increased.

Existing calculation methods of embodied energy

Existing embodied energy calculation methods				Process-based analysis					
				on Input/output-based analysis					
				Hybrid analysis					
System Boundaries									
Raw material extraction	Manufactu ring processes	Transporta tion	Constructi on	Building operation	Refurbish ment	Demolition	Recycling		
Cradle to cradle									
Cradle to grave									
			Cradle to gate						
С	radle to ga	te							

The aim of this research is to evaluate insulation refurbishment options in terms of operational and embodied energy to provide a comprehensive understanding of the energy efficiency in the context of the UK housing stock.

2018 June 27-29,2018 Aix-les Bains, France

Selected Insulation materials

Building element	Insulation materials				
External walls	Cellular glass				
Internal walls	Cellular glass				
Cavity walls	EPS	Mineralwool	Rockwool		
Cold pitched roofs	Cellulose	Sheepwool	Mineralwool	Rockwool	
Warm pitched roofs	EPS	Rigid Polyurethane	Cellular glass		
Flat roofs	Cellular glass				

Properties:	Rigidity	Water Permeable	Combustable	Vermin Proof
Insulation Types				
Mineralwool	Yes, with resin	Yes	No, Treated	Yes, Treated
Rockwool	Yes, with resin	Yes	No, Treated	Yes, Treated
EPS	Yes	No	No	Yes
Rigid Polyurethane	Yes	No	No	Yes
Cellular Glass	Yes	No	No	Yes
Cellulose	Yes	No, Treated	Yes, Treated	
Sheepwool	No	Yes	No, Treated	Yes, Treated

Calculation steps: Embodied energy

Selection of applicable cases from CH|M model

Calculation of required mass of each insulation material for each case

Calculation of embodied energy and CO2 emission for each case by using property data from the table below

Normalisation of result to per unit floor area for comparison

Properties:	Density	Embodied Energy	Embodied Carbon	Thermal Conductivity
Insulation Types				
Mineralwool	25	16.6	1.28	0.034
Rockwool	30	16.8	1.12	0.039
EPS	12	88.6	3.29	0.039
Rigid Polyurethane	24	101.5	4.26	0.023
Cellular Glass	120	27		0.043
Cellulose	40	3.3		0.04
Sheepwool	22	2.45		0.039

Calculation steps: Operational energy

Selection of applicable cases from CHM model

Application of corresponding U values of each insulation material in CHM Model

Calculation of operational energy for each case based on CHM Model

Normalisation of result to per unit floor area for comparison

- For the cavity wall refurbishments the U Values in Standard Assessment Procedure (SAP) table S6 were used.
- For internal and external wall refurbishments the U Values in SAP table S3 were used.
- For cold, pitched roof refurbishments the U Values in SAP tables S9 S10 were used.
- For warm, pitched roof refurbishments the U Values in SAP tables S9 and S10 were used.
- For flat roof refurbishments the U Values in SAP table S10 were used.

Results: Cavity wall insulants

800 700 600 500 400 300 200 -100 -200

Operational energy (MJ/m2.yr)

Detached
Semi-detached
Mid-terrace
End-terrace
Flat – purpose built
Flat – converted
Non residential

Results: Cold pitched roof insulants

Operational energy (MJ/m2.yr)

Results: Warm pitched roof insulants

Detached
Semi-detached
Mid-terrace
End-terrace
Flat – purpose built
Flat – converted
Non residential

Thank You

