Demand Response Potential of Zero Energy Blocks of Buildings: Modeling and Testing Results from a Case Study in Germany Sustainable Places 2018

Overview

- Research Problems and Approach
- Modelling and Control
- Optimizing Self Consumption
- Impact of Partizipation in Power Markets
 - **Conclusions**

Simulation-Assisted DR in Building Blocks

Building Model:

- White box
- Grey box
- Black box

Block Level:

- Flexibility ontology
- Communication framework
- Optimization approach for cluster

Aggregator:

- Valorisation
- Balancing
- Contract structure

Control Approach for Sim4Blocks

- The heat pump and battery storage are controlled by a local energy manager
- Those energy managers can be controlled by signals from a cloud based Virtual Machine (VM)
- → Simulations for MPC will also run in this VM from where access to all monitoring and weather data is available

Collecting Modelling Approaches for a Smart Quarter

• White-Box Model in INSEL

- Four energy system modelling framework applications:
 - 1. Own consumption optimization with HP and PV Day-Ahead-Market using rule-based heuristic strategies and comparative analysis
 - 2. Impact of negative aFRR energy use in HPs on PV'self consumption in a self consumption optimization framework
 - 3. Rule-based heuristic revenue maximization in the aFRR-context with a cluster of buildings. Comparative analysis strategies and pooling effects on energy use and self-consumption
 - 4. Framework for baseline calculation in cooperating dynamic temperature set-points and PV self consumption optimization

Building Level Model

Control Strategies

Optimized self consumption

 Today most suitable use case for end customers in Germany because of fixed price feed-in tariffs for smaller PV plants (feed in tariff < electricity price) → might lead to reduced DR flexibility potential

Participation in Energy Markets (spot marked trade)

- End customers could profit from flexible heat pump tariffs linked to the daily electricity price fluctuations
- The direct marketing approach for generated PV energy is most suitable for operators of very old (>20 years) and lager PV-plants (> 100 kWp)

Participation in Power Markets (sec. reserve)

- More difficult conditions to participate in
- Combined building, HP and PV operations show a potential which was barley tapped until today

Self Consumption Optimization with HP and PV Day-Ahead-Market Using Rule-Based Heuristic Strategies and Comparative Analysis

- Model based on a real existing single-family building in Wüstenrot
- 3 setpoint temp. scenarios for 16 different strategies (temperature and electricity price thresholds)

Setpoint	20+ 0 °C	20+ 1 °C	20± 2 °C	
controls	2010 C	2011 C	2012 C	
Strategy 1	No limit. St	atic price of 0.22 [€/kWh]. HP works whene	ever necessary.	
Strategy 2	No limit. D	ay-ahead dynamic prices. HP works whene	ver necessary.	
Strategy 3	HP works whenever necessary, with a limit of 0.21 [€/kWh]			
Strategy 4	HP works whenever necessary, with a limit of 0.23 [€/kWh]			
Strategy 5	HP works whenever necessary, with a limit of average price of the day.			
Strategy 6	HP works whenever necessary, only during the night.			
Strategy 7	HP works always with a limit of C	0.21 [€/kWh] _{HP w}	orks always with a limit of 0.21 [€/kWh]	
	if T _{air} <21 °C.		if T _{air} <22°C.	
Strategy 8	HP works always with a limit of C	.23 [€/kWh] _{HP w}	orks always with a limit of 0.23 [€/kWh]	
	if T _{air} <21°C.		if T _{air} <22°C.	
Strategy 9	HP works always if price is lower than av. of the	day and T _{air} <21°C. HP works alway	s if price is lower than av. of the day and T _{air} <22 °C.	
Strategy 10	HP works always during the night if T	_{air} <21°C. HP we	orks always during the night if T _{air} <22 °C.	
Strategy 11	HP works always with a limit of 0.21 [€/kW	h] if T _{air} <22 °C. HP works al	ways with a limit of 0.21 [€/kWh] if Tair <23 °C.	
Strategy 12	HP works always with a limit of 0.23 [€/kW	h] if T _{air} <22 °C. HP works a	ways with a limit of 0.23 [€/kWh] if T _{air} <23 °C.	
Strategy 13	HP works always if price is lower than av. of the day and T _{air} <22 °C. HP works always if price is lower		s if price is lower than av. of the day and T _{air} <23 °C.	
Strategy 14	HP works always during the night if T	HP works always during the night if T _{air} <22 °C. HP works always during the night if T _{air} <23 °C.		
Strategy	HP works always if price among the	e lowest 25% of HP works always if	price among the lowest 25% of the day and Tair <22 $^\circ$	
15	the day and T _{air} <21 °C	C	С.	
Strategy 16	HP works always if price among the low. 25% of t	ne day and T _{air} 22 ^{(L} FT Stuttgart) HP works always i	f price among the low. 25% of the day and T _{air} $\stackrel{2}{<}\!$	

Self Consumption Optimization with HP and PV Day-Ahead-Market Using Rule-Based Heuristic Strategies and Comparative Analysis

Self Consumption Optimization with HP and PV Day-Ahead-Market Using Rule-Based Heuristic Strategies and Comparative Analysis

- Dynamic price thresholds instead of fixed price thresholds (to prevent low activations or overheating of the building)
- Cost savings up to 25% may be achieved by using optimal strategies, increasing the self-consumption ratio, having almost no influence on the thermal comfort and achieving significant peak reductions on the grid

Power markets: Secondary Reserve (aFRR)

- Secondary reserve power market in Germany = Frequency restauration reserve (aFRR)
- The demanded power in the secondary reserve market is volatile
- Offers and bids are placed for an entire week
- Distinction between peak (HT, Monday Friday, 8:00am to 8:00pm) and off peak (NT)
- Duration of a demand for negative power from the grid is a complicated function of the demand and of the structure of plants and other bidders
- → Activation calls are very hard to predict
- → Cheaper bids are activated first
- → Very cheap providers will be called upon almost constantly with few interruptions

Impact of Negative aFRR Energy Use for HPs on PV Self Consumption

- The simulations show a good load shift potential
- 30% of the electrical load could be shifted in both cases, positive and negative DR
- For positive DR only minor losses of comfort must be tolerated (≤ 1K room temp. reduction)
- 1 min activation call duration
- Heat pump cycle times are much longer than the Ø secondary reserve power activation
- → Reduction of heat pumps life and efficiency
- → Solution: Heating rods, heat pump pool, 6/?mcorporation of battery storage^{6. Dr. Ursula Eicker (HFT Stuttgart)}

Impact of Negative aFRR Energy Use for HPs on PV Self Consumption

Financial Gains on a Household Level from Negative aFRR

Results for PV and Heat Pump

12r tep War bb, Way in in the teb Oct Mon Dec

Heat pump share of total electricity consumption (11014 kWh):	35%
Annual contribution secondary reserve aFRR to heat pump electricity:	50%
PV own consumption with aFRR:	31%
PV own consumption without aFRR:	33%
Additional electricity demand with aFRR (losses COP and storage):	7%

Rule-Based Heuristic Revenue Maximization in the aFRR-Context With a Cluster of Buildings: Comparative Analysis Strategies and Pooling Effects on Energy Use and Self Consumption, Aggregated Operation and Optimization

- Cluster management strategies for 6 buildings were examined (focus on February 2016)
- Different strategies with various price scenarios: negative, zero, and positive cost → vary in their number of activation calls and their duration
- Cluster manager makes the decision whether the buildings should be activated or not when an activation call is received
- Two main approaches:
 - 1. Cluster manager provides the aggregator with as much energy as it can \rightarrow Any building will activate its heat pump after fulfilling specific requirements (strategy 2,3,4)
 - 2. The cluster manager always has to provide the aggregator with a certain (and constant) amount of power, deciding which buildings will be activated depending on some criteria

	FRR(-50)	FRR(0)	FRR(+10)		
Strat.	Price: -50 €/MWh	Price: 0€/MWh	Price: +10 €/MWh		
1	Normal control, no activation calls.				
2	Activate HP if electri	ically self-sufficient a	ind T _{air} below 21 °C.		
3	Activate HP if electri	ically self-sufficient a	nd T _{air} below 22 °C.		
4	Activate HP if electrically self-sufficient and T _{air} below 23 °C.				
5	Choose the 3 buildings with the lowest temperature.				

Rule-Based Heuristic Revenue Maximization in the aFRR-Context With a Cluster of Buildings: Comparative Analysis Strategies and Pooling Effects on Energy Use and Self Consumption, Aggregated Operation and Optimization

	Average activation time [min]	Number of activations	
FRR(-50)	3.55	114	
FRR(0)	4.50	336	
FRR(+10)	14.81	1019	

- Strategy 5 involves the highest number of accepted activations due to no temperature constraints (three buildings will always be chosen)
- The higher the temperature threshold, the higher the number of activations
- The differences between strategies 3 and 4 are much smaller than between strategies 2 and 3
- The number of activations generally increased with the price scenarios which have a higher number of activation calls

Framework for Baseline Calculation including Using Dynamic **Temperature Set-Points for PV Self Consumption Optimization**

Prof. Dr. Ursula Eicker (HFT Stuttgart)

Framework for Baseline Calculation including Using Dynamic **Temperature Set-Points for PV Self Consumption Optimization**

Prof. Dr. Ursula Eicker (HFT Stuttgart)

Framework for Baseline Calculation including Using Dynamic Temperature Set-Points for PV Self Consumption Optimization

	January (4d)		March (4d)	
	Reference	Optimized	Reference	Optimized
Demand	81 kWh	82 kWh	54 kWh	52 kWh
PV Production	8,3 kWh		117 kWh	
From Grid	80 kWh	74 kWh	46 kWh	18 kWh
Autarky	1%	8 %	14 %	66 %
EUR Result	-15€	-15€	4€	6€
From Grid rel.	100 %	94 %	100 %	38 %
	January (27d)		March	(23d)
Autarky	1%	15 %	4 %	42 %
From Grid rel.	100 %	101 %	100 %	64 %

Conclusions

- PV/heat pump/storage systems in buildings allow participation in day ahead and secondary reserve markets
- PV self consumption ratio is not much affected by DR actions
- Local optimisation of PV/heat pump/storage systems in buildings can strongly increase self consumption and thus reduce grid stress

visit Sim4Blocks website: www.sim4blocks.eu

This project has received funding from the European Union's Horizon 2020 research innovation programme under grant agreement No. 695965 Prof. Dr. Ursula Eicker (HFT Stuttgart)