

Residential retrofit assessment platform and demonstrations for near zero energy and CO2 emissions with optimum cost, health, comfort and environmental quality.

Plan it right! Do it right! Get it right!

Per Heiselberg Coordinator Aalborg University

Overview - Key figures

- Project period: January 2018 June 2021
- Total Budget: € 8.415.619
- EU Contribution: € 6.914.690
- No. of partners: 17
- No. of SME partners: 7
- Demonstration sites: Denmark, Spain, Switzerland, United Kingdom
- Countries participating: Austria, Belgium, Denmark, Germany, Greece, Ireland, Spain, Switzerland, United Kingdom

AALBORG UNIVERSITY DENMARK

Consortium

Project Coordinator: Prof. Per Heiselberg, Aalborg University, Denmark Technical Manager: Prof. Maria Kolokotroni, Brunel University London, UK DEC Manager: Prof. Denia Kolokotsa, European Cool Roofs Council, Belgium

Project Partners:

Austria:	Alchemia-Nova GMBH		Spain:	Universidad de Cadiz
Belgium:	European Cool Roofs Council		·	Acciona Construction SA
Denmark:	Aalborg University			Ayuntamiento de Cadiz
	Horn Group		Switzerland:	Estia SA
	Frederikshavn Boligforening			Groupe E Greenwatt SA
Germany:	VA-Q-TEC AG			Quantis
Greece:	Core Innovation and Technology			Retraites Populaires
Ireland:	University College Cork		United	
	United Technologies Research	Centre	Kingdom:	Brunel University London

The role of buildings in the green transition of the energy system - 2050

- Focus on cost optimality on system level, i.e the socioeconomic balance between energy savings and RE production
- Focus on a "holistic view" on renovation of the existing building stock
- Focus on realizing energy efficiency improvements and energy savings
- Focus on more efficient use of renewable energy production, peak power reduction and secure power capacity through Energy Flexible and Grid-Supportive Buildings

ReCO2ST Solution Summary

Objective

- To develop a refurbishment process delivering refurbishment scenarios customized to end-user needs and applicable to a wide variety of residential buildings.

The solution / key results

- Refurbishment Assessment Platform to provide the customer with clearly defined, user-driven refurbishment scenarios and empowering the decision making of the building owner
- ✓ Integrated Project Delivery method for planning and optimization of construction and installation
- Intelligent Energy Management System with a graphical user interface or optimization of operation and energy management process
- ✓ Retrofit-Kit featuring a compendium of cost efficient and modular technologies to be used for NZEB renovation
- ✓ Business-Case-Kit enabling building owners to analyze and optimize the business case for a specific building renovation case

Pilots / demo

Frederikshavn Vevey Denmark Switzerland

Cadiz Spain Uxbridge United Kingdom

DENMARK

WEB Based Assessment Platform

- Calculate indicators
- Rank actions
- Create scenarios
- Evaluate scenarios

- Report analysis
 Report scenarios
- Report decision

Business Model Kit (BMK)

The Business Model Kit is a tool to convince, help and guide the building owner to launch energy retrofit works

Least Cost Method

- **Owner/User Requirements**
- Legal frame

Technical Assessment RAT: EPIQR + EcoSolutions

- **Balance : energy efficiency and** renewable energy production
- **Technico-Economic optimization** of scenarios

Technologies

Residential Demonstration Sites

Demo renovation in Vevey

Demo renovation in London

y much for your attention 10

Per Heiselberg Department of the Built Environment Aalborg University Denmark E-mail: pkh@build.aau.dk

AALBORG UNIVERSITY DENMARK

Contact

\checkmark

info@RECO2ST.eu

@ w

www.RECO2ST.eu

COLOPHON

This project has received funding from the European Union's H2020 framework programme for research and innovation under grant agreement no 768576.

The information in this publication does not necessarily represent the view of the European Commission.

© RECO2ST

All rights reserved. Any duplication or use of objects such as diagrams in other electronic or printed publications is not permitted without the author's agreement.

