

SESSION 2: VALIDATION AND IMPACT ASSESSMENT METHODOLOGIES

ICT-ENABLED BEHAVIORAL CHANGE TOWARDS ENERGY EFFICIENT LIFESTYLES (INBETWEEN) PROJECT TECHNICAL COORDINATOR - DR MARKO BATIC, INSTITUTE MIHAJLO PUPIN

Session 2: Validation and Impact assessment methodologies Agenda

- InBetween objectives & solution overview
- Validation methodology
 - Key Performance Indicators (KPIs)
 - Energy consumption, GHG and economic analysis
 - Lessons learnt
- Impact assessment methodology
 - End-users changing their behaviour
 - Adoption of the InBetween ICT platform

InBetween solution Objectives

- IDENTIFY energy wastes,
- learn HOW to conserve energy,
- MOTIVATE them to act and
- help them to actually CARRY OUT EE practices.
- Deliver affordable solution that brings added value without significant disruption of everyday activities and comfort.

InBetween solution Overview

Validation methodology Key Performance Indicators

Different KPI perspectives

- Platform users
- Demo site owners
- Platform maintenance teams, R&D etc.

Multiple KPI categories

- Energy performance and comfort (d/w/m)
- End-user engagement
 - App usage statistics (in-app activity)
 - User feedback
 - Collected data report
 - Notification statistics
- In-App reports a mix of energy performance and notification statistics

8 C	00_00	Benchmark score		
artı Ağusus	01_01t	Energy consumption - to	♥ 0	2.3
	01_01	Energy consumption by p	← Summary report	
	01_02	Energy consumption by f	Contraction of the second	
	01_03t	Energy consumption - h	80	80
	01_03	Energy consumption by p	- 400	
	01 04	Energy consumption by p	2.5 ().	
	01 05	Energy consumption by p	400	-
	01 06	Energy consumption by p		
	01_07t	Energy use by person - h	171 187	7
	01_07	Energy use by person - h	(m).	-
	01_08	Energy consumption by p		
	01_09	Source energy consumpt	0 07.000 00.000 09.000	÷.,
	01_10	CO2 emissions		
	01_11	Energy savings	Key performance indicators	
	01 12	CO2 emission savings	Air Quality	
	01_13	Energy cost savings	During 0.00 % of month September the air quality in	
	01_14	Energy use % of ideal der	Join poule was boot	
	01_15	Peak load indicator	Mark and a	
	01_16	Load match index	Notificationy	
			notifications soluted to energy waste, compared to	
comfort.	02_01	Temperature discomfort	During month Reptentier, you received 0	
	02_02	% uncomfortable hours	previous month.	
	02_03	Thermal discomfort indic	70011280	
	02_04	% hours with bad air qua	Suring month September, the redoor temperature was taginer than 242 for 8,08 % of the time while	
	02_05	Stale air indicator		
	02_06	Volatile organic compour		
uter en.	03_01	Recency index		
	03_02	Message opening rate		
	03 03	Compliance indicator		

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 768776

Validation methodology Energy performance analysis

∭ InBetv	ween)
- ela	

- Based on IPMVP (Option C)
- KPIs considered:
 - Total electricity consumption
 - Total space heating consumption
 - Domestic Hot Water
 - CO₂ emissions
 - Energy costs savings

Validation methodology **Energy performance analysis**

Data analysed in Vilogia:

- EMI data: linear regression based on HDD. Baseline complemented with invoice data.
- Heating consumption from radiator smart cables
- DHW from hot water tank smart cables
- Specific lockdown analysis

Data analysed in Sonnenplatz:

- Residential buildings
 - Electricity: comparison of monthly average consumption
 - Heating: analysis with linear regression using invoice data for baseline
- Non-residential buildings
 - Electricity: problem with solar PV generation. Normalization with invoice data.
 - Heating: analysis with linear regression using heat meters with invoice data
- Specific lockdown analysis for residential and non-residential

35.00 10.00 25.00 15.00 10.00

Electricity

Validation methodology GHG and economic analysis

Analysis of GHG Emissions:

- GHG emissions abatement associated to energy savings of demo sites
- Calculations based on CO₂ emission intensity for electricity generation
- **Biomass** heating is not considered for emissions abatement.

Economic analysis

- Estimation of economic savings associated to energy savings observed
 - Vilogia: total electricity savings, considering peak and off-peak hours.
 - Sonnenplatz residential & non-residential: total electricity savings (no time discrimination)

Validation methodology Lessons learnt

Results of the energy performance analysis

- Analysis results must be interpreted cautiously, there are many factors influencing reliability of results
 - Data availability
 - Combination of invoice and monitored data
 - Precision of HDD corrections
 - Change of habits during COVID-19 lockdown
 - Ability to associate the cause of energy savings
 - In some cases, savings comparable with margin of error of data normalization

Impact assesment methodology End-users changing their behaviour

Impact #1

Reduction in terms of total energy consumption, CO₂ reduction and operating costs

Impact #2

• Number of end-users changing their behavior

Impact #3

• Adoption of the InBetween platform

Impact assessment methodology Comprehensive user activity logging

Engagement with the platform (KPI-A1)

- Number of *sessions* and
- *intensity* of each session

Compliance indicator (KPI-A2)

- Reaction to notifications (KPI-A21)
- The use of actuators (KPI-A22)

User satisfaction (KPI-A3)

User feedback

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 768776

THANK YOU FOR YOUR KIND ATTENTION!

PROJECT TECHNICAL COORDINATOR - DR MARKO BATIC, INSTITUTE MIHAJLO PUPIN MARKO.BATIC@PUPIN.RS

