Towards Positive Energy Districts in smart cities A data-driven approach using aggregation and disaggregation of energy balance calculations

Sustainable Places 2021 29th September 2021

Selma Causevic, George Huitema, Arun Subramanian, Coen van Leeuwen, Mente Konsman (TNO) Contact: selma.causevic@tno.nl

This project has received funding from the Horizon 2020 programme under grant agreement n°824418. The content of this presentation reflects only the author's view. The European Commission and INEA are not responsible for any use that may be made of the information it contains.

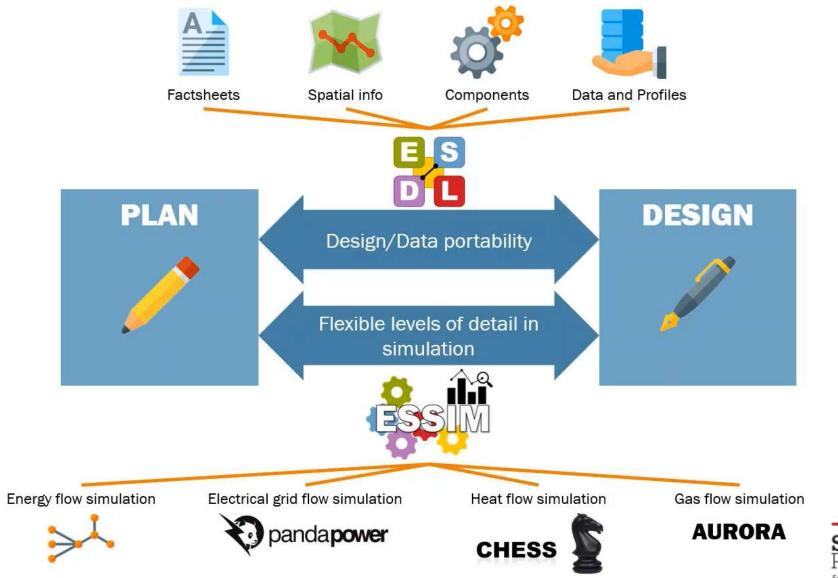
Context

- Modern energy systems <u>shift towards more decentralized</u>, <u>sustainable and smart</u> <u>systems</u>
- Important to <u>understand the effect of DER interventions</u> on energy balance and the impact on sustainability goals
- Use energy models to understand this impact
- Challenging
 - models rely on <u>data availability</u>, which is often scarce
 - modelling and simulating areas with a mixed topology, i.e. heterogeneous types of consumers and prosumers, and their energy interventions, as is the case with urban areas
 - Data on energy demand, production and savings has to be collected from different sources, <u>on different aggregation levels</u>

Introduction

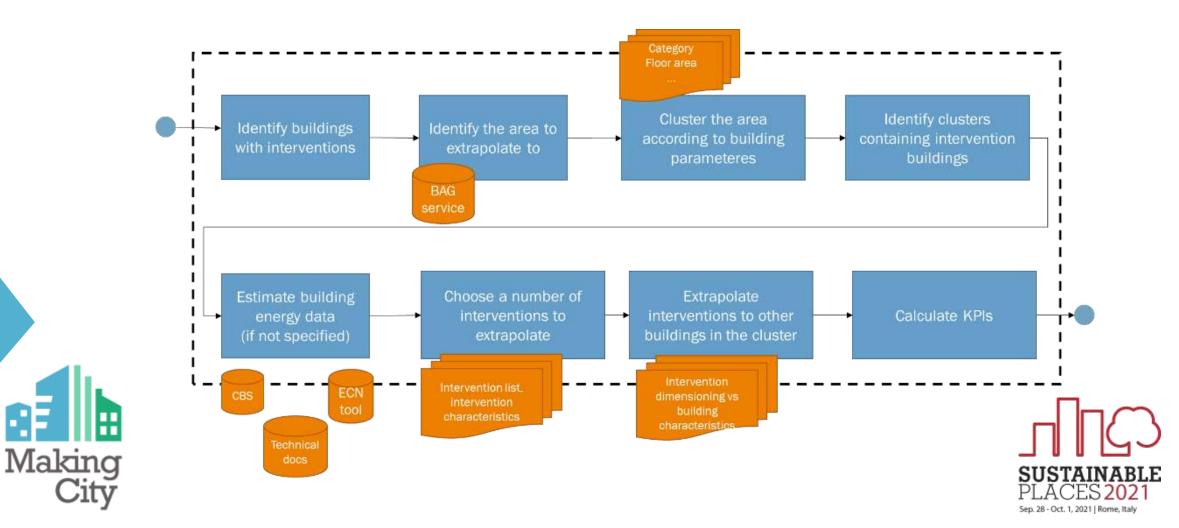
- This paper presents
 - A data modelling approach
 - to estimate annual energy balance of different types of consumer categories in urban areas
 - A methodology
 - to extrapolate energy demands from specific building types to an aggregated level and vice versa
- Case
 - model and calculate the energy balance and CO₂ emissions in two PED areas of the City of Groningen (Netherlands) proposed in the Smart City H2020 Making City project

Estimating energy balance in urban districts – a data-driven approach

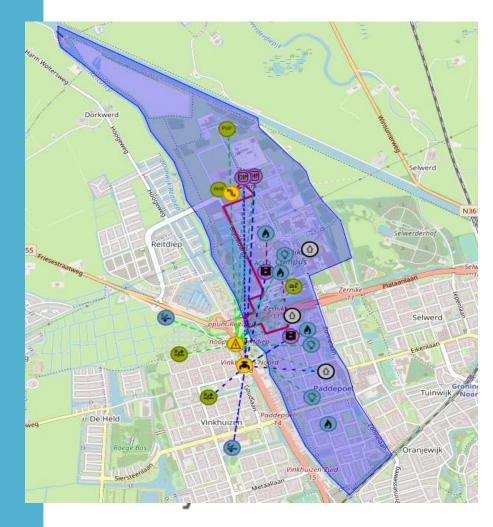

- Energy supply and demand always have to be in balance
- To understand the effect of (possible) energy interventions on an energy system balance (and other KPIs)
 - knowledge of energy supply and demand has to obtained
- This paper: uses Energy System Description Language (ESDL) toolsuite to model two districts in Groningen, using a combination of different data sources

ESDL Toolsuite

Making City


Methodology

- How to
 - determine the impact of individual energy interventions on the global level?
 - extrapolate individuals energy interventions on other buildings on the global level?
- Urban area divided into clusters of different consumer categories to estimate energy demands based on
 - E.g. surface area, building type and energy interventions
- Based on aggregate data, and cluster parameters, energy demand is determined disaggregation



Local to global: Aggregation and disaggregation of energy data (to PED level)

Use case H2020 Making City Approach on two PEDs in LHC Groningen (NL)

Discussion and conclusions

- Energy models are used to understand different energy transition pathways
- Estimating energy demand and production requires knowledge of different parameters of urban areas, on different aggregation levels
- This paper presented data modelling methodology to extrapolate energy demands from specific building types to an aggregated level and vice versa

Thank you Get in touch for more information!

<u>selma.causevic@tno.nl</u> george.huitema@tno.nl

Follow us on Twitter & LinkedIn! @MakingCity_EU

Project information available on the MAKING CITY website: <u>www.makingcity.eu</u> Contact us: <u>contact@makingcity.eu</u>

