

POTENTIAL FOR A REDUCTION OF THE CARBON DIOXIDE EMISSIONS OF CZECHIA BY RENOVATING THE NATIONAL BUILDING STOCK

Antonín Lupíšek, Tomáš Trubačík, Petr Holub

Czech Technical University in Prague

University Centre for Energy Efficient Buildings

BACKGROUND AND MOTIVATION

- Buildings are responsible for approximately 40% of energy consumption and 36% of CO₂ emissions in the EU [1].
- At the same moment, the building sector has the highest potential for delivering significant and cost-effective GHG reductions [2].
- Countries shall have estimations of their building stocks potential to contribute to climate change mitigation goals

- [1] European Commission, Buildings, (2018). https://ec.europa.eu/energy/en/topics/energyefficiency/buildings (accessed April 10, 2018)
- [2] United Nations, Buildings and Climate Change: Summary for Decision Makers, 2009. doi:10.1127/0941-2948/2006/0130

OBJECTIVES

mage credit: zendesk.com

OBJECTIVES

- To contribute to the national discussion of the GHG emissions saving potential by:
 - Reviewing the renovation options of the existing building stock
 - Defining renovation scenarios
 - Quantifying the potential of CO₂ savings for each scenario towards 2050
 - Considering potential impact of the future reduction of emission factors
 - Evaluating the potential share of building stock on the national GHG emissions savings

METHODS

mage credit: European University Institute

METHODS

- Inventory of the Czech building stock
- Modelling energy consumption of the Czech building stock
- Defining renovation scenarios towards 2050
- Defining scenarios of shares of energy sources in future energy consumption and BIPV uptake potential
- Modelling energy consumption of residential and non-residential building stocks in scenarios
- Identification of the CO₂ emission factors
- Quantifying the potential of CO₂ savings for each scenario towards 2050
- Conducting sensitivity analysis reflecting the future reduction of emission factors
- Evaluating the potential share of building stock on the national GHG emissions savings

6

- Data from censes from the Czech Statistical Office
 - ENERGO 2015 census

7

- Buildings 1-99 survey (2018)
- Data from national EPC registry provided by the Czech Ministry of Industry and Trade
- Data on renovations from the Czech associations

CZECH BUILDING STOCK MODELLING Modelling:

- Residential building stock
 - Based on stochastic model of 1000 single family and multifamily houses
- Non-residential building stock
 - Based on real models of 100 representative buildings
- Extrapolated to whole building stock per m²
- Results calibrated by the data from energy audits and national inventories of energy consumptions

DEFINING 4 RENOVATION SCENARIOS TOWARDS 2050

Baseline Scenario

Corresponds to the state-of-the art policy without any improvements (business as usual)

Governmental Scenario

Defined by the Ministry of Industry and Trade for the policy steering

Progressive Scenario

Continuous deep energy retrofitting of the Czech building stock

Hypothetical Scenario

Fast deep energy retrofitting of the Czech building stock

9

Shares of renovation depths in the Czech building stock in time, according to the four scenarios

Scenarios of shares of energy sources in future energy consumption

Scenario		Baseline	Governmental	Progressive	Hypothetical			
Energy Carrier/Source	2016	2050	2050	2050	2050			
Residential building stock								
Fuel oils	0%	0%	0%	0%	0%			
Natural gas	30%	25%	26%	23%	22%			
Coal	12%	10%	3%	0%	0%			
Biomass (excluding pellets)	20%	25%	20%	15%	12%			
Pellets	0.3%	4%	9%	14%	16%			
District heating	17%	16%	16%	15%	15%			
Electricity	19%	10%	11%	8%	8%			
Solar thermal	0.3%	2%	4%	6%	7%			
Heat pumps	1%	9%	12%	19%	21%			
		Nonresidential bui	lding stock					
Gas cogeneration	2%	2%	2%	2%	2%			
Natural gas	27%	26%	23%	22%	22%			
Coal	0.2%	0.2%	0%	0%	0%			
Biomass (excl. pellets)	0%	0%	0%	0%	0%			
Pellets	0.3%	4%	8%	8%	9%			
District heating	29%	28%	25%	25%	25%			
Electricity	42%	39%	36%	36%	35%			
Solar thermal	0.2%	2%	4%	4%	4%			
Heat pumps	0%	0.2%	3%	3%	3%			

Considered yearly amounts of electricity production in GWh from building-attached and building-integrated photovoltaics

Sector	Scenario	2016	2030	2040	2050
Residential	Baseline and Governmental	262	2944	4710	6477
	Progressive	262	5561	8995	12,430
	Hypothetical	262	5414	9707	14,000
Nonresidential	Baseline and Governmental	140	1560	2490	3420
	Progressive	140	2940	4755	6570
	Hypothetical	140	3129	5265	7400
Whole building stock	Baseline and Governmental	402	4504	7200	9897
	Progressive	402	8501	13,750	19,000
	Hypothetical	402	8543	14,971	21,400

CO₂ emission factors applied in the calculations

Fuel or Energy Carrier	Assumed Emission Factor (t CO ₂ /MWh)
Coal	0.35
Fuel oils	0.26
Natural gas	0.20
Biomass	0.00
Heat from solar collectors	0.00
Electricity from the national grid	0.60
Onsite-produced electricity from BIPV	(-)0.60
Heat from district heating system	0.30
Energy from gas cogeneration (proxy)	0.10
Heat from heat pumps	0.20

Variant scenarios for CO₂ emission factors applied in the sensitivity analysis for 2050

Fuel or Energy Carrier	Emission Factors for Variant Scenarios for 2050 (t CO ₂ /MWh)				
	EF1 (Baseline)	EF2	EF3		
Electricity from grid	0.600	0.400	0.200		
Heat from district heating system	0.300	0.225	0.150		
Gas from gas distribution system	0.200	0.180	0.160		

EVALUATING THE POTENTIAL SHARE OF BUILDING STOCK ON THE NATIONAL GHG EMISSIONS SAVINGS

According to the last national commitment in 2016, the Czech Republic supports the decarbonisation plan of the EU, but can contribute only by 80 % reduction of GHG in 2050 (compared to 1990)

- National 2050 target 32.8 Mt CO₂
- NIR: national CO_2 production was 106.6 Mt CO_2 in 2016
- According to our calculations CO_2 emissions from operation of building stock were 36.9 Mt CO_2 (34.6 %)

Virtual target for building stock in 2050 (equal contraction):

- 34.6 % X 32.8 = 11.4 Mt CO₂

RESULTS

Image credit: traffective.com

A simplified overview of the modelled final energy annual consumptions [PJ]

Scenario	2016	2030	2040	2050			
Residential building stock							
Baseline		234	219	204			
Governmental	050	232	214	196			
Progressive	253	206	154	126			
Hypothetical		179	126	115			
Nonresidential building stock							
Baseline		117	109	102			
Governmental	105	113	102	93			
Progressive	125	107	94	86			
Hypothetical		98	85	83			

Comparison of CO₂ reduction potential of all scenarios

Summary of scenarios including outcomes of the sensitivity analysis [Mt CO_2]

Scenario	2016	2050 without PV	2050 with PV			
Target		At least 11.4	At least 11.4			
Baseline		26.7	20.8			
Governmental		23.5	17.5		EF2	EF3
Progressive	36.9	18.5	7.1		5.8	4.4
Hypothetical		17.7	4.8	Π	4.2	3.5

UNCERTAINTIES

- Emission factors
 - Current for the electricity from the national grid
 - Simplifications for the renewables zero emission factors
 - Future emission factors
- Future development of shares of energy sources
- Future development of the building stock
- Changes of energy consumption in buildings due to changing climate

(Study does not consider embodied emissions, which are allocated to industry, but would be significant and might be hard to achieve)

CONCLUSIONS

 If the (weak) national commitment of 80 % GHG reduction is to be achieved (and buildings are to take the 34,6% share), the at least the Progressive scenario has to be followed

 Hypothetical scenario combined with reduced emission factors of electricity, gas and district heating enables almost complete decarbonisation, but to achieve it bold actions and high investments are needed now

Article Czech Building Stock: Renovation Wave Scenarios and Potential for CO₂ Savings until 2050

Antonín Lupíšek ^{1,*}, Tomáš Trubačík ² and Petr Holub ²

- ¹ University Centre for Energy Efficient Buildings, Czech Technical University in Prague, 273 43 Buštěhrad, Czech Republic
- ² Chance for Buildings, 155 00 Prague, Czech Republic; tomas.trubacik@sanceprobudovy.cz (T.T.); petr.holub@sanceprobudovy.cz (P.H.)
- * Correspondence: antonin.lupisek@cvut.cz

Abstract: One of the major anthropogenic sources of greenhouse gases is the operation of building stock. Improving its energy efficiency has the potential to significantly contribute to achieving climate change mitigation targets. The purpose of this study was to roughly estimate such potential for the operation of the national building stock of Czechia to steer the national debate on the development of related national plans. The estimation is based on a simplified energy model of the Czech building stock that consists of sub-models of residential and nonresidential building stocks, for which their future energy consumptions, shares of energy carriers and sources, and emission factors were modeled in four scenarios. Uncertainties from the approximation of the emission factors were investigated in a sensitivity analysis. The results showed that the operation of the Czech building stock in 2016 totaled 36.9 Mt CO_2 , which represented 34.6% of the total national carbon dioxide emissions. The four building stock scenarios could produce reductions in the carbon dioxide emissions of between 28% and 93% by 2050, when also considering on-side production from photovoltaics. The implementation of the most ambitious scenario would represent a drop in national CO_2 yearly emissions by 43.2% by 2050 (compared to 2016).

Citation: Lupíšek, A.; Trubačík, T.; Holub, P. Czech Building Stock: Renovation Wave Scenarios and Potential for CO₂ Savings until 2050. Energies 2021, 14, 2455. https://doi.org/10.3390/en14092455

Keywords: national building stock; climate change mitigation; carbon dioxide; scenarios modelling; Paris Agreement; EU Green Deal; energy efficiency

MORE DETAILS

CESB22 Conference Authors Partners Sustainability News YRSB22

Central Europe towards Sustainable Building 2022 International Scientific Conference July 4 – 6, 2022, Prague CESB22 Prague 200+ abstracts 4-6 July 2022 www.cesb.cz

THANK YOU FOR ATTENTION!

antonin.lupisek@cvut.cz

This work has been supported by the Ministry of Education, Youth and Sports within the project INTER-EXCELLENCE No. LTT19022