

ModSCO a web application based on a grey-box model to support the estimation of the energy savings in building retrofit.

Speaker:

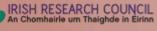
Alessandro Piccinini

Informatics Research Unit for Sustainable Engineering (IRUSE), NUI Galway, Ireland

Authors:

Alessandro Piccinini, IRUSE, NUI Galway, Ireland Federico Seri, IRUSE, NUI Galway, Ireland Letizia D'Angelo, IRUSE, NUI Galway, Ireland Shima Yousefisarjan, IRUSE, NUI Galway, Ireland Marcus M. Keane, IRUSE, NUI Galway, Ireland

Sep. 28 - Oct. 1, 2021 | Rome, Italy


Monday, October 18, 2021

Sphere Project

BIM DIGITAL I WIN PLATFOR

Budget: 12,8 M€

SPHERE is a 4-year (2018-2022), Horizon 2020 project that aims to provide a BIM-based Digital Twin Platform to optimise the building lifecycle, reduce costs, and improve energy efficiency in residential buildings.

OBJECTIVES

25% Reduction in construction time

15% Less energy demand during the operational phase 25% Less CO2 and GHG emissions in buildings

CONSORTIUM

18 partners from 10 different EU countries

Coordinator: IDP

Background

Within the last decade, the European Union has developed policies aimed at accelerating the cost-effective renovation of existing buildings, with the vision of a decarbonised building stock by 2050.

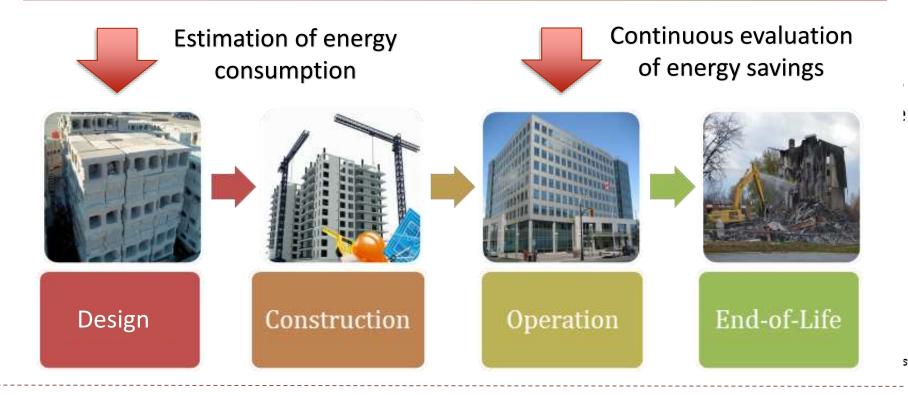
One of the potential measure to target these objectives is the EPC

Barriers:

Process complexity

Lack of information about the buildings

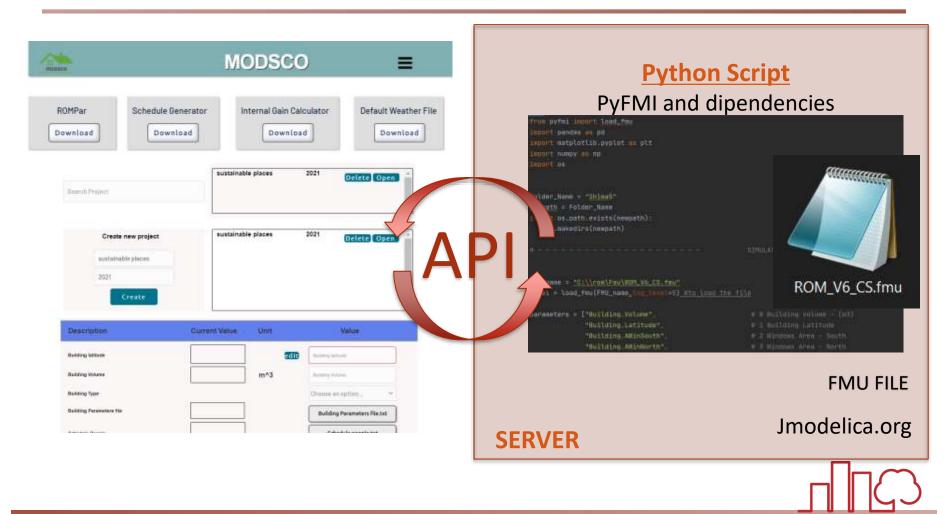
Uncertainty about post renovation's energy performance



(Lee et al., 2015)

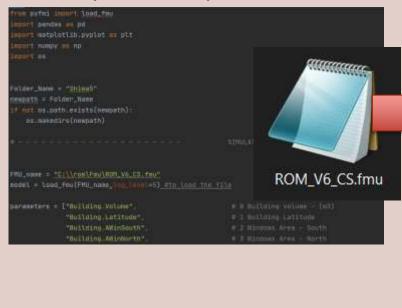
ModSCO Web Application

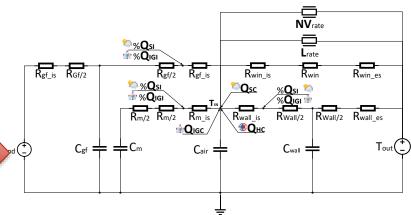
ModSCO define a whole building energy model utilising 28 PARAMTERS



SUSTAINABLE PLACES 2021 Sep. 28 - Oct. 1, 2021 | Rome, Italy

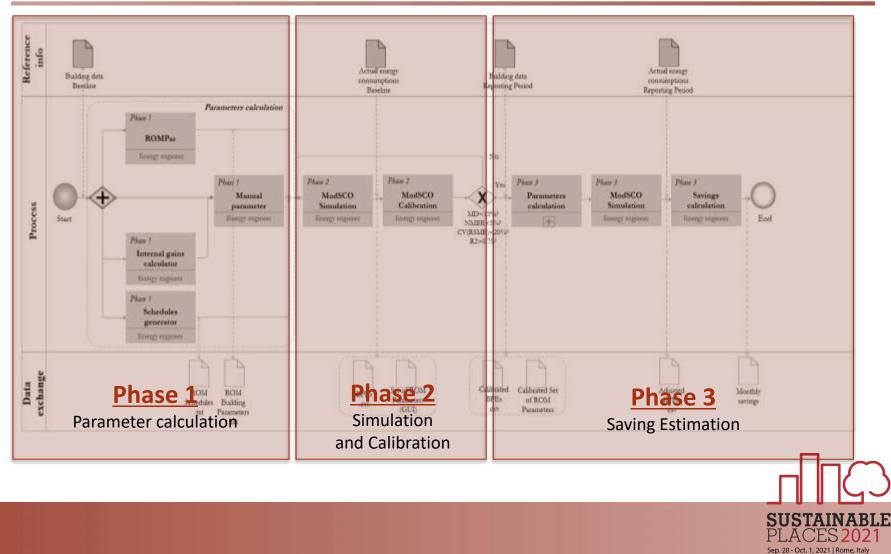
ModSCO Core Platform


5



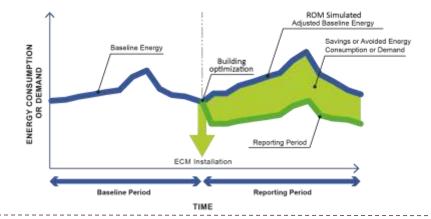
ModSCO Core Platform

Python Script PyFMI and dipendencies


RC-Network of the ROM

- Based on the grey box modelling approach;
- Developed using Modelica in the Dymola Environment;
- Used the thermal network analogies by means of resistances and capacitances.

ModSCO Web App



Pilot Description

UNIVERSITY BUILDING - Aras de Brún

SCOPE: to create the Baseline Period Energy consumption to estimate the energy savings after the implementation of the ECMs (blue line)

ENERGY BILLS of 2 years (2019 – 2020)

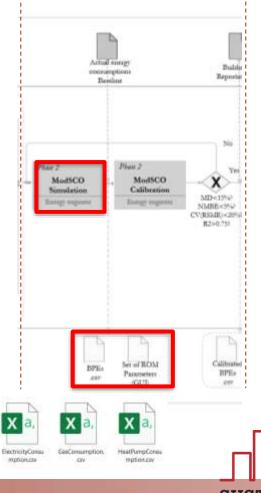
BUILDING DRAWINGS AND SENSORS DATA

ModSCO - Phase 1

2019 Data

9

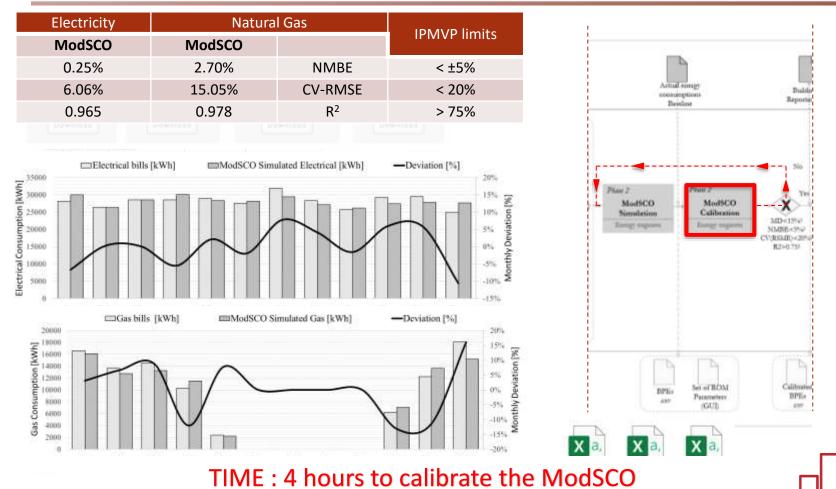
			Description	Unit	Value
	MODSCO	—	Building Type (residential or not residential)	-	Not resident
BALK -	MODSCO	—	Building/room latitude	-	53 280417
			Building/room volume	m3	9282.26
			Building Parameters file	-	
ROMPar Schedule Gene	erator Internal Gain Calculator	Default Weather File	Weather data file .mos	-	Galway 201
			Ground Temperature	°C	15
Download Downloa	d Download	Download	Maximum heat gain per people	W	<mark>1</mark> 8751
			Maximum electrical power per lighting	W	<mark>1</mark> 4374
			Maximum electrical power per equipment	W	18907
	sustainable places 2021		StandBy electrical power per lighting/equipment.	W	5991
		Delete Open	Maximum cooling Power of the system	W	-10000
Bearsh Project			Maximum heating Power of the system	W	220000
		-	System equipment electrical power (pumps, fans)	W	9090
			StandBy heating power	W	10000
Greate new project	sustainable places 2021	Delete Open	StandBy cooling power	W	0
			Heating Setpoint	°C	20
sustainable places			Cooling Setpoint	°C	24
2021			Schedule People (3rd spreadsheet)	-	-
			Schedule Lighting (3rd spreadsheet)	-	-
Create			Schedule Equipment (3rd spreadsheet)	-	-
			Schedule Heating System (3rd spreadsheet)	-	(test 2)
Description	Current Value Unit	Value	Schedule Cooling System (3rd spreadsheet)	-	-
Description	Contraine value ont	Value	Infiltration Rate		2
Hundrey Mittade	SUD homes		CALIBRATION PHASE PARAMETE	ER	
			Lighting efficiency/utilization	-	1
Building Volume	m^3		Equipment efficiency/utilization	-	1
Building Type	Danai e	aufan Y	People system influence	-	Not used
	Sectored in	19900414 .5511	Heating system efficiency/utilization	-	1
Building Perenutary file			reading system emelency, admization		-


TIME : 2 hours to calculate the parameters

ModSCO - Phase 2

10

PODER		MODSCO	=
ROMPar Download	Schedule Generator	Internal Gain Calculator	Default Weather Fi
Cooling system efficiency/s	<u></u>	etholonous/dificultien tertingtion Rate: signing etho	lençulutitation. Maulmum coefin
4	-		
<u>. e</u>		Save	
	Use data	Søve + set as template	×



Sep. 28 - Oct. 1, 2021 | Rome, Italy

ModSCO - Phase 2

11

ModSCO - Phase 3

Energy Saving Estimation_

	le Generator	Internal Gain		Default Weath
		inable places	2021	Oclete Open
Search Project				
Create new project	sust	sinable places	2021	Delete Open]
sustainable places				
sustainable places 2021 Create				
2021	Current Val	e Ont		value
2021 Create	Current Vel		ID Roma and	Value
2021 Create Description	Current Val			Value
2021 Create	Current Val			Value
2021 Create Description Reseauction Balance Wave	Current Vel		terra en terra en Cama el	Value

Updated with data referred to the Reporting Period (after implementation ECMs)

ModSCO vs IES-VE comparison

13

ModSCO ModelIES-VE ModelImage: Strain Strai

Electricity		Natural Gas			IPMVP limits	
ModSCO	IES-VE		ModSCO	IES-VE		
0.25%	1.18	NMBE	2.70%	-0.66	NMBE	< ±5%
6.06%	7.49	CV-RMSE	15.05%	13.30	CV- RMSE	< 20%
0.965	0.93	R ²	0.978	0.983	R ²	> 75%

ModSCO conclusion

The MODSCO Web application provides :

- A quick and accurate method for a reliable quantification of energy savings achieved through Energy Conservation Measures (ECMs);
- A easy to use tool for quick evaluation of Building energy consumption;
- A novel methodology to support Measurement and Verification (M&V) in case of uncertainty in building retrofit;

The ModSCO Web Application will be available by the end of December 2021

Thank you for your attention

Questions?

