

| Starts on | Durat<br>(min) | Agenda Item                                                                                                                                                                                               | Speaker/Moderator              |
|-----------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 08:45     | 15             | "Connecting" /arrival of participants                                                                                                                                                                     |                                |
|           |                | (tentative attendance: 5 physical presence, 14 online)                                                                                                                                                    |                                |
| 09:00     | 5              | Welcome - Introduction                                                                                                                                                                                    | M. Founti                      |
| 09:05     | 40             | PROJECT PRESENTATIONS                                                                                                                                                                                     |                                |
|           |                | <ul> <li>INFINITE: Industrialised durable building envelope retrofitting by all-in-one interconnected<br/>technology solutions</li> </ul>                                                                 | S. Avesani                     |
|           |                | PLURAL: Plug-and-Use renovation with adaptable lightweight systems                                                                                                                                        | M. Founti                      |
|           |                | ENSNARE: ENvelope meSh aNd digitAl framework for building Renovation                                                                                                                                      | F. Noris                       |
|           |                | <ul> <li>POWERSKIN+: Highly advanced modular integration of insulation, energizing and storage<br/>systems for non-residential buildings</li> </ul>                                                       | J. Corker                      |
|           |                | <ul> <li>SWITCH2SAVE: Lightweight switchable smart solutions for energy saving large windows and<br/>glass facades</li> </ul>                                                                             | M. Fahland                     |
|           |                | StepUP: Solutions and Technologies for deep Energy renovation Processes Uptake                                                                                                                            | A. Panchal                     |
|           |                | DRIVE0: Engaging consumers for the decarbonization of Europe's buildings                                                                                                                                  | J. van Oorschot                |
| 09:45     | 45             | ROUND TABLE I: MAPPING and "CLUSTERING" OF TECHNOLOGIES DEVELOPED IN THE PROJECTS                                                                                                                         |                                |
|           |                | <ul> <li>Sum-up of H2020 Deep Renovation-Positioning paper; conclusions and recommendations<br/>(John van Oorschot, 5 mins)</li> </ul>                                                                    | Federico Noris<br>(ENSNARE)    |
|           |                | <ul> <li>Typologies of "Plug-and-Play" hybrid systems (both opaque and transparent systems) based<br/>on passive and active systems and technologies that fulfill multifunctional and off-site</li> </ul> | John van Oorschot<br>(DRIVE 0) |
|           |                | prefabrication requirements. Circular technologies (10 min).                                                                                                                                              | Jorge Cocker                   |
|           |                | • Control/automation/IoT interactive systems/ collaborating with the Plug-and-Play hybrid                                                                                                                 | (Powerskin+)                   |
|           |                | technologies towards fulfilling energy, comfort and safety requirements (5 min).                                                                                                                          | Matthias Fahland               |
|           |                | • Wrap up (F. Noris)                                                                                                                                                                                      | (Switch2Save)                  |
| 10.30     | 15             | Coffee Break                                                                                                                                                                                              |                                |

| Starts on | Durat (min) | Agenda Item                                                                                                                                                                                                                                                                                                                                                                                   | Speaker/Moderator                                                                                                   |
|-----------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 10:30     | 45          | ROUND TABLE II: HOW DO THE "CLUSTERED" TECHNOLOGIES PERFORM?                                                                                                                                                                                                                                                                                                                                  | Stefano Avesani (INFINITE),                                                                                         |
|           |             | <ul> <li>TOWARDS NZEB: Which technologies can contribute to the NZEB / Positive Energy targets? Can we achieve energy positive deeply renovated residential buildings with Plug-and-Play hybrid systems? (10 min)</li> <li>Challenges and threats: OPEN questions (such as safety, standardization, manufacturing, business models, market) (10 min)</li> <li>Wrap up (S. Avesani)</li> </ul> | Peru Elguezabal Esnarrizaga (ENSNARE)<br>Amisha Panchal<br>(StepUP)<br>Constantinos Tsoutis<br>(PLURAL, Powerskin+) |
| 11:15     | 15          | Workshop wrap up, next steps, close of meeting                                                                                                                                                                                                                                                                                                                                                | M. Founti (PLURAL)                                                                                                  |





### Industrialised durable building envelope retrofitting by all-in-one interconnected technology solutions

| Speaker                     | Stefano Avesani                      | <b>eurac</b><br>research | HUYGEN<br>Incenieus & Adviseurs                              | GreenDe                                               | ецта 🔊 е        | DERA STATT<br>GRAU | ine team             |
|-----------------------------|--------------------------------------|--------------------------|--------------------------------------------------------------|-------------------------------------------------------|-----------------|--------------------|----------------------|
| Organisation                | Eurac Research                       |                          |                                                              | EF4 5                                                 | <b>EOUYGUES</b> | RUBNER<br>holzbau  |                      |
| Start / end date of project | 01.11.2020 - 30.04.2025              |                          |                                                              | GENERALITAT<br>VALENCIANA<br>VALENCIANA               |                 | • PHYSEE           | SVN/\GE <sup>B</sup> |
| Funding                     | H2020                                |                          | which is invariant at Designed<br>of Deliversity of Liebjace | y Granderis de Visienda<br>y Arguitectura Bischmötica | _               |                    |                      |
| Project website             | https://infinitebuildingrenovation.e | eu/                      | Aramis                                                       |                                                       |                 | PolyOuvrages       | Stanovanjskopodjetje |

## Project key objectives



#### To increase the market update of industrialised retrofit




**O5** Demonstration

To build-up a consensus for the Renovatio4.0 approach

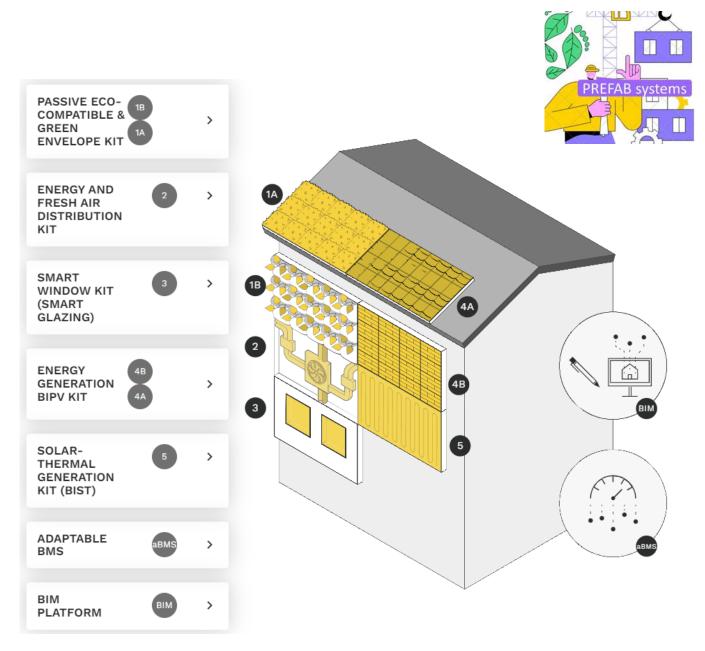
## Concept and Methodology



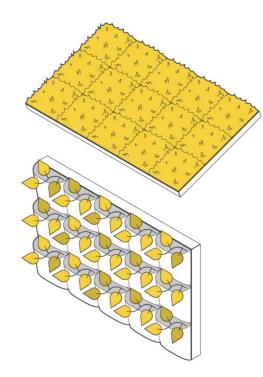
Industrialised renovation = RENOVATION 4.0



## Concept and Methodology




Industrialised solutions triggering DEEP RETROFIT renovation offering


- ✓ nZEB target based on
  - High indoor comfort
  - Electrification
- ✓ Stakeholders-centered development
- ✓ LCA / LCC & DfA/DfD optimised
- ✓ Appealing buildings
- ✓ Flexibility meeting different architectural visions (e.g. plaster VS ventilated façade)

## The solutions

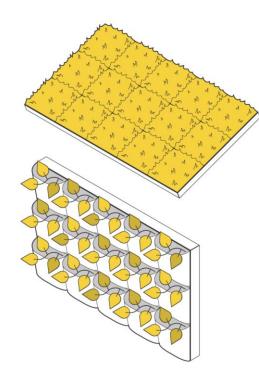
## Technologies developed





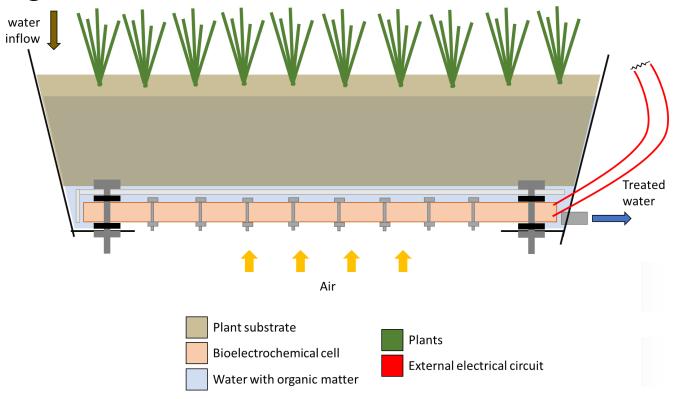


#### **GREEN ROOF and FACADE KIT**

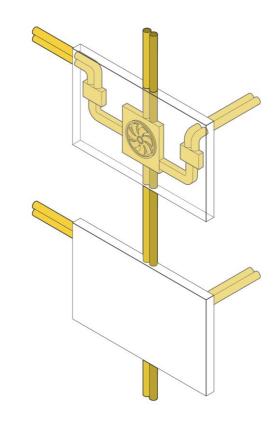

- Timber based prefab façade and roof
- Around 16-20cm rockwool insulation (60kg/m<sup>3</sup>)
- Possibility to prefabricate different greening systems

(from climbing plants to living walls)

• **<u>Rainwater</u>** irrigation system






#### **GREEN ROOF and FACADE KIT**

 <u>Greywater BioElectricalSystem</u> to power sensors for irrigation control







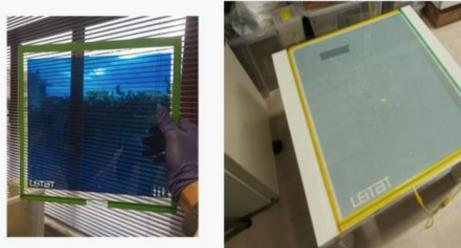

#### FRESH AIR, H&C KIT

- Timber based prefab façade
- Around 20cm rockwool insulation (60kg/m<sup>3</sup>)
- <u>Accessible prefabricated decentralized ventilation</u> <u>machine</u> (and accessories as plenum, ducts, control unit)
- Innovative machine: fresh air & heating & cooling supply

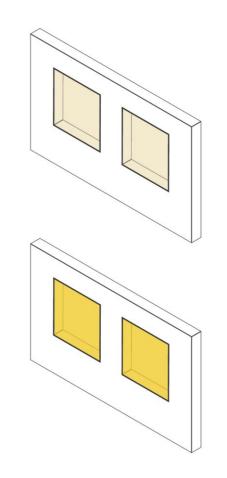
#### • <u>Two possible integrations:</u>

- $\circ$  Under the window
- $\circ$  As parapet/on the balcony



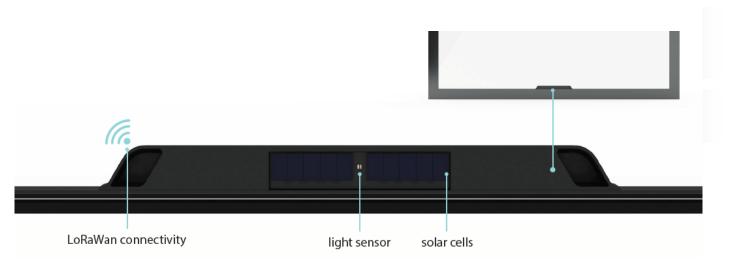




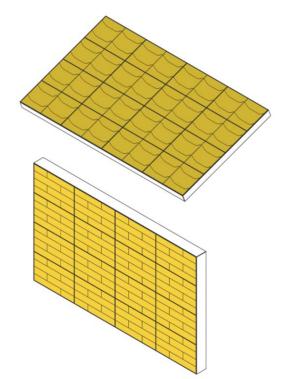


#### **SMART WINDOW KIT**

Plug-and-Play solutions of the project

- Prefab window and shading
- Sun shading techs:
  - ✓ Traditional curtains, lamellas
  - ✓ Commercial elechtrochromic glazing
  - ✓ Plasmachromic glazing

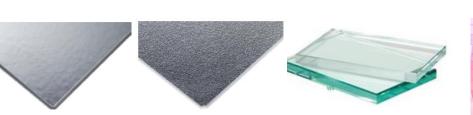




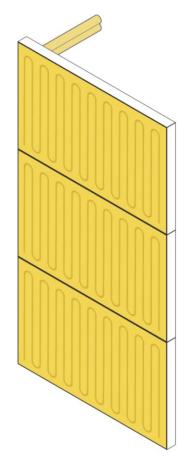




#### **SMART WINDOW KIT**

- Smart measure and control system
   ✓ SENSE bar
  - ✓ Remote server for real time optimisation



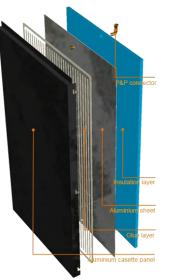


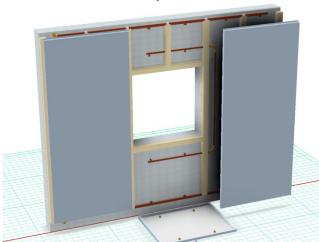




#### BIPV KIT

- Coloured glass-glass PV modules (with dynamic selection tool)
- Structured cover glass (Satin, 3d-shaped, smooth, texture)
- Optimised module sizes and Tailor-made
- Glued or Hybrid or Mechanical anchoring






#### **BIST KIT**

- Full solution including windows, sun protection, final cladding, etc.
- Prefabricated in the factory
- P&P Hydraulic connection
- Weather resistant (long life)
- Quick installation (time saving)
- Architectural integration (aesthetics)







## Key barriers - Challenges



#### MARKET UPTAKE

- Investment cost of the DEEP RENOVATION
- Investment cost of the ALL-IN-ONE PREFAB SOLUTION
- Weight of timber-frame envelope modules

#### CHALLENGES

- Industrialisation to drive DEEP RENOVATION
- ALL-IN-ONE envelope requirements not standardized

### Consortium

Coordinator

eurac

research

**Project Partners** GRÜN Statt Grau HUYGEN EDERA one team GreenDelta INGENIEURS & ADVISEURS **RUBNER** oba**tek** INEF4 🏁 BOUYGUES holzbau managing technologies IVE INSTITUTO VALENCIANO de lo EDIFICACIÓN GENERALITAT VALENCIANA SV/N/\GE **PHYSEE** Vicepresidencia Segunda y Conselleria de Vivienda y Arquitectura Bioclimática University of Ljubljana Aramis 1 PolyOuvrages Stanovanjskopodjetje VORTICE





# PLURAL: Plug-and-use Renovation with adaptable lightweight Systems

Maria Founti, Coordinator

Organisation

Start date

Funding

**Speaker** 

**Project website** 

**National Technical University of Athens** 

01 October 2020, 48 months

H2020 - LC-EEB-04-2020:- Industrialisation of building envelope kits

https://www.plural-renovation.eu/







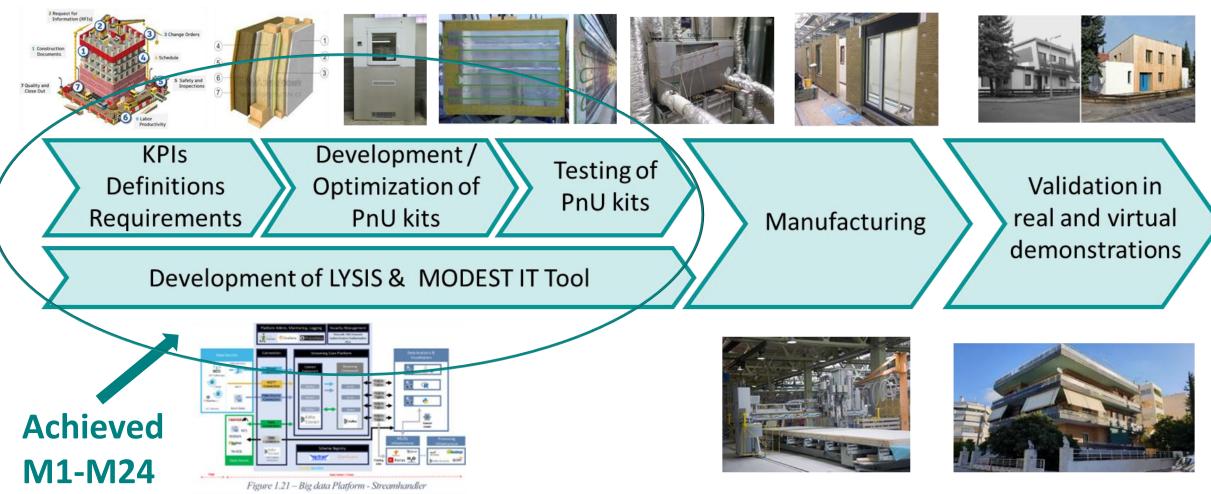
**PLURAL** aims to design, validate and demonstrate a palette of versatile, adaptable, scalable, off-site prefabricated Plug-and-Use (PnU) kits.

The key is to understand how to select and integrate various renewable energy technologies, incorporate them in prefabricated façade components and optimize their performance for different building types, climates and socio-economic conditions.

PLURAL demonstrates the integration of hybrid passive and active systems into one kit and their ability to work together in synergy for façade retrofitting, reaching NZEB.

**Key Objectives** 

- 🐹 🚲 🖾 🐹 **⊠**€ 🔀 🍝 🐹 😳 🖸 ର 🐹 🖑 🐹 🕐
- Near zero energy consumption of buildings renovated with PnU kits 1)
- **Cost-effective renovation**
- **Fast-track renovation** 3)
- **Environmentally-friendlier deep renovation** 4
- **Flexibility Adaptability** 5






- Three PnU kits: the SmartWall, the ConExWall (external Wall Heating and Cooling kit) and the HybridWall (external texTILES constructive system with Advanced Heat and Cool recovery kit)
- Six demonstration sites implementing the PnU kits
- Enhancement of occupant satisfaction via a **user centric approach** that implements learning based control methods and strategies.
- A Building Information Modelling (BIM) based data handling platform and a Decision Support Tool (DST) will be developed to enable the optimal component selection, and integration, best PnU kit design, faster and low-cost manufacturing and installation.
- PLURAL focuses on how to manufacture the PnU kits minimizing energy use and material waste (implementing lean manufacturing principles-F.Q.Ps).
- Develop training tools for main stakeholders (planners, installers, building owners and end users);
- Improve the life cycle based (LCA, LCC) performance standards applied in the building sector.

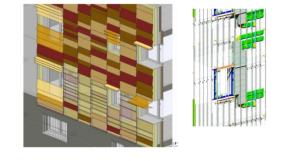


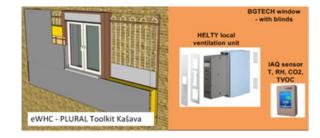




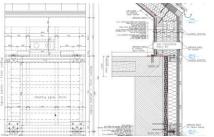





#### The SmartWall PnU


#### The ConExWall PnU

#### The HybridWall PnU

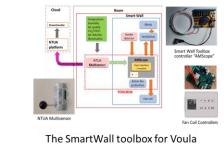


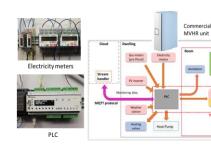


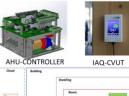


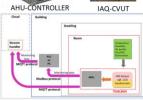




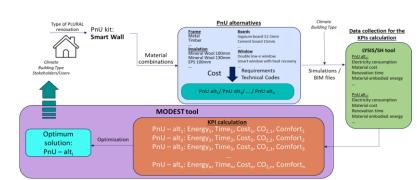


## The solution – Technologies developed




The toolboxes /supervisory control strategies










The IT and decision support tools: LYSIS and MODEST

9/8/2022, Sustainable Places 2022



The Kasava toolbox for the eWHC PnU





#### **Pilot validation and demonstration**

- Three real demo cases/ Monitoring- pre and post retrofitting; modelling
- Three virtual demo cases; modelling
- Technical, environmental, and financial viability; Ensure NZEB status; Validate cost and renovation time







| KPI                   | Performance<br>Value              | Target value                                | Achieved value M18                                                                                                                                                   |
|-----------------------|-----------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NZeB                  | U-value (W/m <sup>2</sup> K)      | 0.23 W/m <sup>2</sup> K                     | PnU designed with U-value matvhing nZEB; Preliminary results: Voula 1.35 W/m <sup>2</sup> K <sup>2</sup> , Terrassa N/A, Kasava 0.29 W/m <sup>2</sup> K <sup>2</sup> |
|                       | Primary Energy<br>consumption     | <60 kWh/m <sup>2</sup> (depends on country) | Preliminary results: Voula 178 kWh/a, Terrassa 76 kWh/m <sup>2</sup><br>Kasava 93 kWh/m <sup>2</sup>                                                                 |
| Cost-effectiveness    | Renovation Costs                  | 58% less than conventional renovation       | Parameters influencing costs have been defined.                                                                                                                      |
| Fast-tract renovation | Time required for deep renovation | At least 50% reduction                      | Parameters influencing renovation time have been defined                                                                                                             |
|                       | CO <sub>2</sub> eq/m <sup>2</sup> | 0.5 tCO <sub>2</sub> eq/m <sup>2</sup>      | Verification to be done                                                                                                                                              |
| Environmental impact  | Recyclability                     | 70% material recyclability                  | 90% of SmartWall materials are recyclable. To be confirmed for the other 2 PnUs (WP8).                                                                               |
| Adaptability          |                                   | System combinations                         | 4 variants of SmartWall defined. To be confirmed for the other 2 PnUs.                                                                                               |





- Continuous increase of energy and diesel prices might affect production capacities and eventually production costs of PnU kits.
- Shortages on raw materials, high tech components, chemical compounds, etc., are already noticeable. At the moment, handled by PLURAL manufacturers
- Worldwide and/or European possible future lockdowns might affect businesses, infrastructures, organizations, commercial companies etc. and affect production of PnU kits.



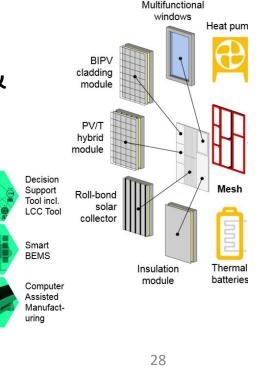


# ENSNARE: ENvelope meSh aNd digitAl framework for building REnovation

- Speaker Federico Noris
- Organisation R2M Solution
- Start date, duration 01/01/2021 49 months
  - H2020 7.99M€
- **Project website**

**Funding** 

https://www.ensnare.eu/



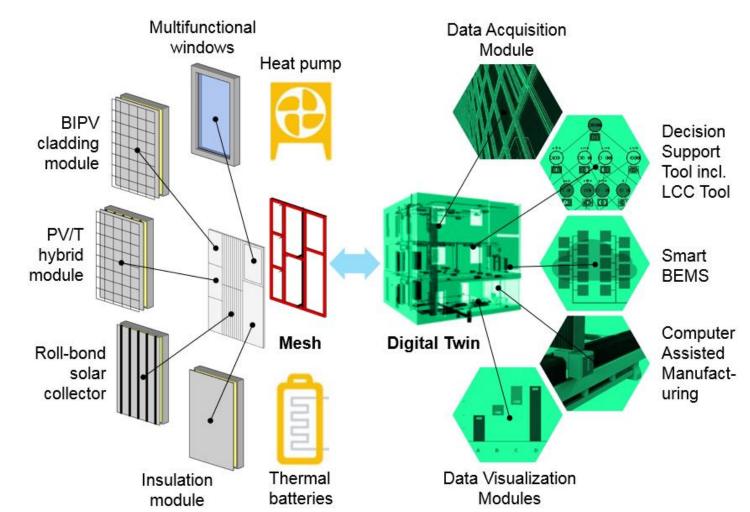





The main goal of ENSNARE is to boost the implementation of NZEB renovation packages in Europe by providing a systemic methodology combining products, systems and solutions. This is done via the development of **2 key structures**:

- Modular envelope mesh facilitating mechanical assembly & interconnection
- A Digital platform supporting all renovation stages leveraging a digital toolbox



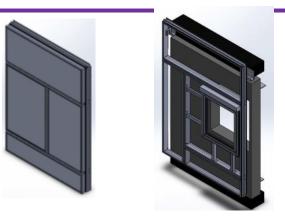

**Digital Twi** 

Data Visualization Modules



## **ENSNARE** Concept






## The solution – Technologies developed



For Building Components (Mesh)

- Industrialized modular façade panels. Aluminium.
- Integrated renewable solar systems (PV, ST, PVT).
- Smart window
- Heat pump coupled to PCM storage
   8/26/2022, Sustainable Places 2022









Building Informatio

Annual Carbon Emission

(co<sub>2</sub>) 410.2 tCO2e

Digital Twin Specifications:

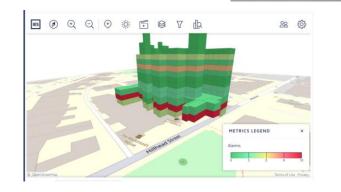
· Art pallery in centre of park, recently re

 Total floor area: 11854r Natural gas heating · 664.3m2 of PV panels installe Has cooling and dehumidification le Fourse results shown are for post refurble

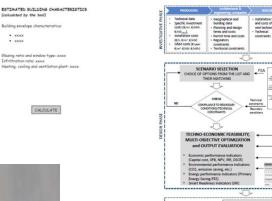
Annual PV Generatio

# 96841 MWh

A 1025 Trees


No. of Trees Needed for Same Carbon S

For Digital solutions (Platform)


- Early decision support tool
- Automated data acquisition tool
- Smart BEMS

**ENSNARE** 

• Digital Twin



The solution – Technologies developed



Annual Energy Consumpti

47 1880 MWh

quivalent No. of UK Home

118.2 Homes

-

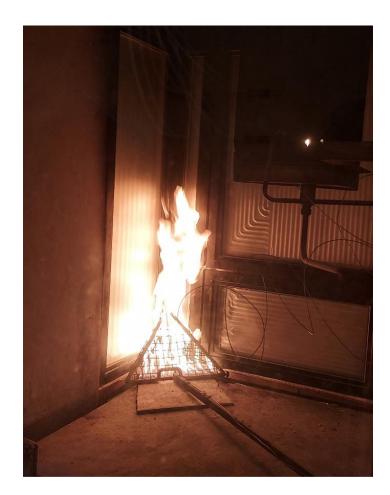


Interest rate
 Energy price evolution
 Tax deduction other forms o incentive



STEP 2: CONCEPT DESIGN STEP 3: FINAL DESIGN STEP 4: EXECUTION STEP 5: OPERATION

Renewables (heating Electricity Renewables (electrici


Gas



## Key barriers - Challenges



- Achieve smooth and effective interconnection between both worlds: the digital and the physical one
- Get a synergetic interaction of the combined technology packages in highly efficient and reliable solutions
- Feasibility of the systems and adequate performance to be applied in the renovation sector.







## **POWERSKIN PLUS**

#### Highly advanced modular integration of insulation, energizing and storage systems for non-residential buildings

| Speaker                                                                                                                      | Jorge Corker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Organisation                                                                                                                 | IPN – Instituto Pedro Nunes, Coimbra, Portugal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Start date, duration October 2019, 4-year project                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| FundingH2020 -NMBP-EEB-2019 - Integration of energy smart materials in non-residential<br>buildings (IA) - Innovation action |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Project website powerskinplus.eu                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| <b>Project partners</b>                                                                                                      | Image: Section of the section of th                                |  |  |  |  |
|                                                                                                                              | VINIVERSITAT UNIVERSITAT VINIVERSITAT VINIVE |  |  |  |  |



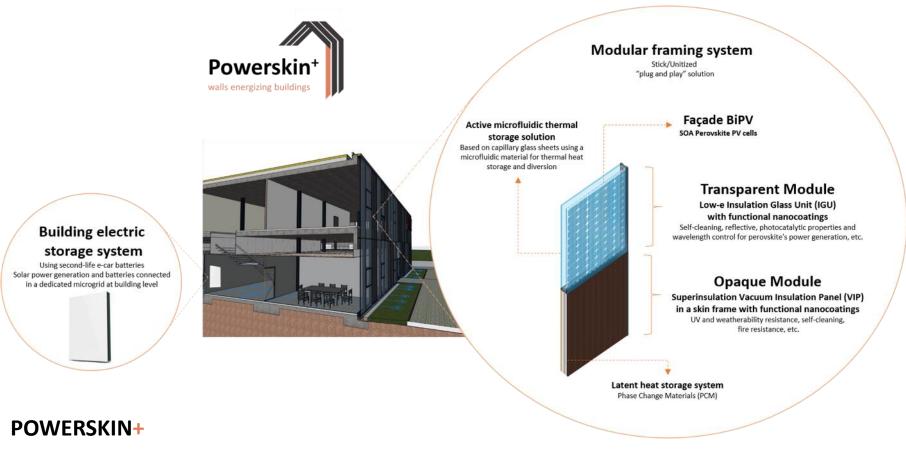


The concept proposed by POWERSKIN+ releases the untapped potential of curtain wall facades for a highly efficient energy valorization in buildings while developing a modular integrated approach consisting of several innovations whose technologies and added value intend to suppress available alternatives on the market.

A truly integrative smart curtain wall façade solution comprising:







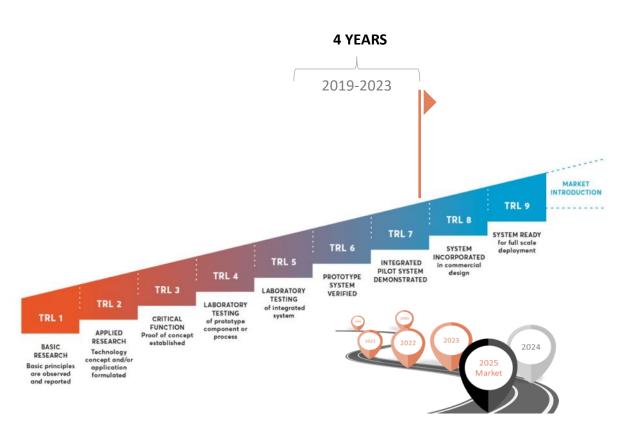

Active and passive energy storage features



### PROJECT OVERALL CONCEPT






"A true all-combined modular energy management turnkey package, following superior energy efficiency and sustainable eco-design standards, especially address for modern non-residential solutions"



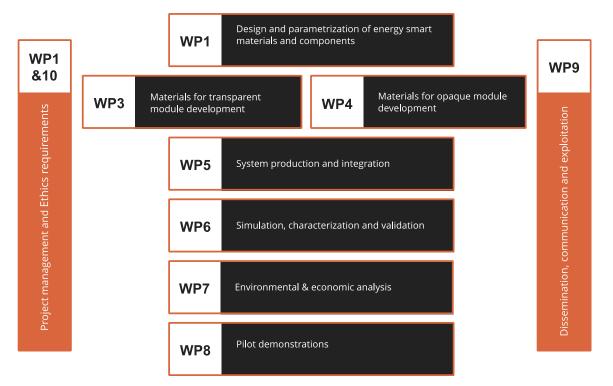
### **PROJECT KEY OBJECTIVES**



- Generate innovative hybrid-enabled systems enhanced with different multifunctional add-on features, for nZEB and Plus Energy Building Curtain Wall solutions
- Demonstrate true holistic façade solutions in an operational environment, treading the path for future exploitation of non-residential buildings as the primary entrance market
- Aim at new buildings but providing the retrofit market with highly adaptive multi-case energy efficient and management systems

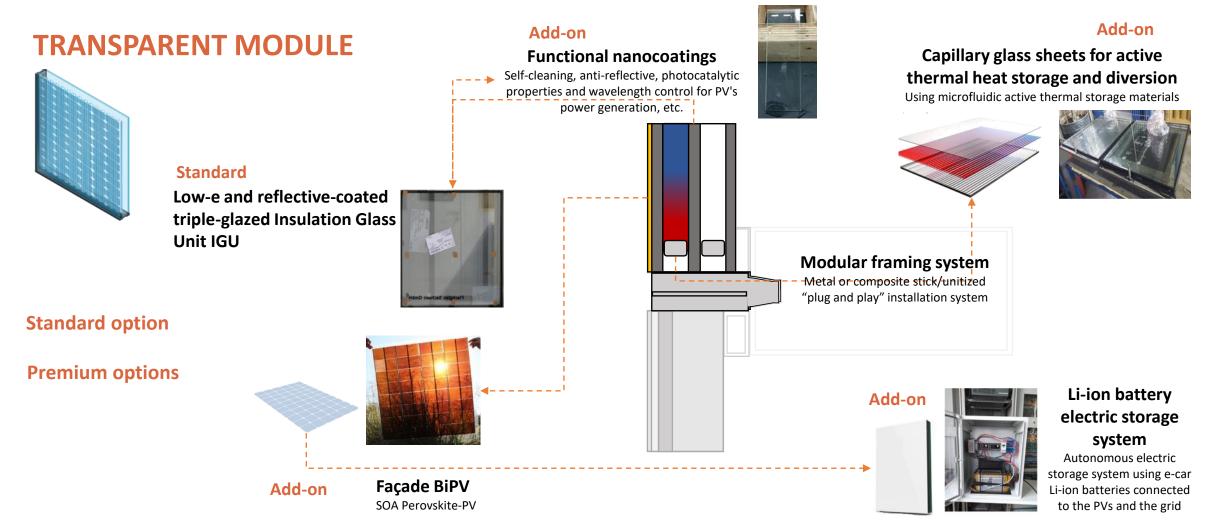


Set POWERSKIN+ from lab to operational environment (TRL7)




## **PROJECT METHODOLOGY**




Combination of a wide number of state-of-the-art high energy-efficient KETs development/piloting program

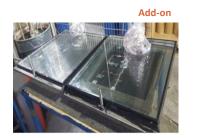
- Superinsulation elements (IGU and VIP)
- Multi-functional nano-enabled coatings
- Active/passive PCM-driven latent heat storage elements and microfluidic thermal storage materials (RES)
- Solar energy harvesting components based on flexible perovskite solar cells (semi-transparent and opaque) (RES)
- Electrical BMS supported by second-life Li-ion batteries from electrical vehicles (BEMS)














#### **TRANSPARENT MODULES**



PS+ 1<sup>st</sup> generation opaque module prototype



Water flow distribution

PS+ semi-transparent microfluidic heat storage system prototypes





PS+ semi-transparent PV pilot production/testing



|      |              |               |       | Add-on  |   |
|------|--------------|---------------|-------|---------|---|
|      |              | Vapor condens | ation |         |   |
|      |              | BMS           |       | 2       | - |
| Heat | at exchanger | Battery       | pack  | **<br>* |   |

20° t=0 t=5days t=12days

Hydrophobic and self-healing capabilities of the PS+ transparent coatings

PS + standard transparent module main features and properties

| Material                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Glass                       | Soda-lime silicate float glasses melted from the<br>following naturally occurring raw materials (main<br>components, in mass percentage):<br>Sand (SiO <sub>2</sub> , 58 ma%); Soda (Na <sub>2</sub> CO <sub>3</sub> , 18 ma%);<br>Dolomite (Ca(CO <sub>3</sub> ) <sub>2</sub> -Mg(CO <sub>3</sub> ) <sub>2</sub> , 15 ma%); Lime<br>(Ca(CO <sub>3</sub> ) <sub>2</sub> , 5 wt%); Sulphate ([SO <sub>4</sub> ] <sup>2</sup> , 1 wt%) |
| Spacers                     | Thermally optimized spacers made of aluminium<br>Other options possible (stainless steel,<br>polymer/metal combinations, or containing<br>organic materials)                                                                                                                                                                                                                                                                         |
| Sealant                     | Butyl (other options possible)<br>Secondary sealing (polyurethane, silicone)                                                                                                                                                                                                                                                                                                                                                         |
| Desiccant                   | Zeolites                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Inert gases                 | Argon                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Features                    | PS+ Triple-glazed standard IGUs (transparent)<br>modules                                                                                                                                                                                                                                                                                                                                                                             |
| Weight                      | 10.8 kg (600 x 600 mm) 30kg/m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                           |
| U-value                     | $\leq$ 0.80 W/(m <sup>2</sup> K) (33.4% below the average of 1.2 W/(m <sup>2</sup> K) for an air-filled double-glazed window with low-e coatings                                                                                                                                                                                                                                                                                     |
| Dimensions                  | Up to 2000 x 3000 mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                    |
| PS+ premium<br>capabilities | Ready for add-on integration                                                                                                                                                                                                                                                                                                                                                                                                         |

PS+ Building electric storage system (piloting/cooling system)

Add-on



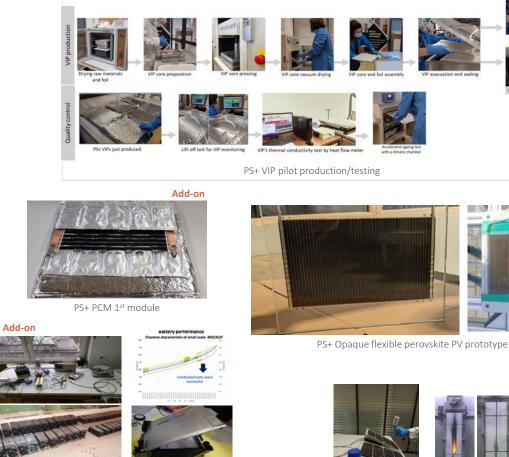


#### **OPAQUE MODULE** Add-on **Functional nanocoatings Standard** Add-on UV weatherability, fire resistance, etc. Module skin panels (Glass / Composite / Metal) Superinsulation module Vacuum Insulation Panels (VIPs) Latent heat storage system Phase Change Materials (PCM) LIGHTWEIGHT STANDARD OPAQUE MODULE Modular framing system Metal or composite stick/unitized "plug and play" installation system **Standard option Premium options** Li-ion battery Add-oi electric storage Add-on system Autonomous electric **Façade BiPV** storage system using e-car SOA Perovskite-PV Li-ion batteries connected to the PVs and the grid





#### **OPAQUE MODULES**




PS+ 1<sup>st</sup> generation transparent module prototype

Standard



PS+ VIP insulation prototype





PS+ Building electric storage system (piloting/testing)





Add-on

U-Value (W/m<sup>2</sup> K

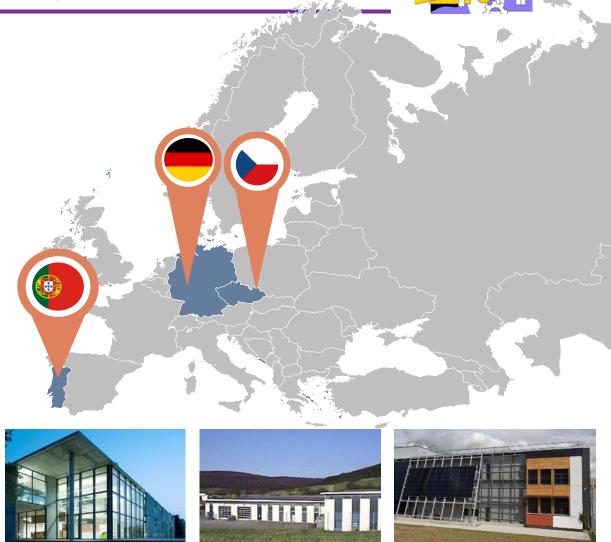
PS+ Opaque sprayable coatings and fire testing

PS + opaque module types, main features and properties

| Parts                                                 |                                                                                                                                            | Opaque Modules                                                                                                                                                            | PS+ Premium Opaque                                                              |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|                                                       | Lightweight Standard Modules                                                                                                               | Standard Modules                                                                                                                                                          | Modules                                                                         |
| Sketch<br>Outer skin panel sub-module <sup>i</sup>    | Ultra-light fibre-reinforced                                                                                                               | Option 1: Fibre reinforced plastic<br>(FRP) w/ fire retardants                                                                                                            | Same options as standard modules                                                |
|                                                       |                                                                                                                                            | Option 2: Opacified glass<br>Option 3: Aluminium panel<br>Option 4: Composite panel                                                                                       | modules                                                                         |
| Insulation<br>sub-module <sup>3</sup>                 | Fibreglass VIP                                                                                                                             | Option 1: Fumed silica VIP core for<br>superior service life<br>Option 2: Recycled or renewable<br>hybrid VIP core for superior<br>sustainability                         |                                                                                 |
| Inner skin panel sub-module *<br>( <u>hnck</u> panel) | Same as the outer skin                                                                                                                     | Same as the outer skin                                                                                                                                                    |                                                                                 |
| inner frame<br>sub-module *                           | Recycled polymer frame<br>(optional)                                                                                                       | Recycled polymer frame (optional)<br>Option 2: conventional or thermally<br>optimised spacers                                                                             |                                                                                 |
| Skin panel coatings *                                 | Multifunctional coatings with<br>Intumescent flame-retardant<br>paint                                                                      | Multifunctional coatings available<br>- Self-cleaning<br>- Anti-fungal<br>- Light reflective<br>- Self-healing<br>With intumescent flame-retardant<br>paint (if required) |                                                                                 |
| Sealing                                               | Tape (commercial)                                                                                                                          | Tape, butyl, polyurethane, silicone,<br>etc. (Commercial)                                                                                                                 |                                                                                 |
| Energy storage add-on *                               | •                                                                                                                                          | •                                                                                                                                                                         | PCM plus activating heating<br>foil                                             |
| Energy Harvesting add-on <sup>7</sup>                 |                                                                                                                                            |                                                                                                                                                                           | Flexible opaque perovskite<br>BIPV cells                                        |
| Prototype<br>Pictures                                 | - Arrow Range                                                                                                                              | PS' STANDARD<br>OP AQUE MODULE                                                                                                                                            | PERMI DIALE ROCKE                                                               |
| Features                                              | Manalakia                                                                                                                                  | Madela                                                                                                                                                                    | Maniabla                                                                        |
| Color                                                 | Variable<br>RAL coulors possible                                                                                                           | Variable<br>RAL colours possible                                                                                                                                          | Variable<br>RAL colours possible                                                |
| Dimensions                                            | Variable 300X300 to<br>1000X600mm<br>Nominal thickness (mm): ~<br>21mm                                                                     | Variable 300X300 to 1000X600mm<br>Variable thickness possible for the<br>VIP up to 40mm                                                                                   | 300X300 to 1000X600mm,<br>variable thickness possible for<br>the VIP up to 40mm |
| Applications                                          | Special applications where<br>lightweightness is ultimately<br>required, VIP protection, special<br>curtain wall façade spandrels,<br>etc. | Curtain wall façades (opaque zones)                                                                                                                                       | Curtain wall façades (opaque<br>zones)                                          |
| Weight (kg/m²)                                        | 4,98 12,3                                                                                                                                  | Variable                                                                                                                                                                  | Variable                                                                        |
| 11 14-1 041 (2 14)                                    | 0.000                                                                                                                                      | Masiabla                                                                                                                                                                  | Maslahla                                                                        |

Variat




### PILOTING DEVELOPED TECHNOLOGIES



POWERSKIN+ will **prototype** and **demonstrate** both **premium** and more **affordable solutions**, for non-load bearing curtain wall systems, based on high durability individual and system components.

POWERSKIN+ façade renovation system will be demonstrated and validated in an operational environment in **3 real-size non-residential buildings** located in 3 different European countries (Portugal, Germany and the Czech Republic).

The demo cases represent **2 different climates** (Csa -Hot-summer Mediterranean and Cfb - Oceanic in the Köppen climate classification), as well as different building practices characterizing and realising how the overall system will work in real conditions in the future.





### PILOTING DEVELOPED TECHNOLOGIES





Future pilot demonstration at IPN

Main demo installation



**IPN installation (Coimbra, PT)** Planned for Autumn 2022



### TIMELINE TO RESULTS





**POWERSKIN PLUS Mock-up** 



**POWERSKIN PLUS outdoor test cells** 

## 2021 2022 2023

May Materials, integrated systems production and performance specification defined

#### March

POWERSKIN+ upgrade façade system (addons) integration attained and prototyped

#### February

POWERSKIN+ lab-scale experimental validation completed

#### September

First set of standard opaque and transparent prototype modules realized

#### October

Installation and full-year demonstration initiated in operational environment

#### August

POWERSKIN+ documents database and future market entrance guidelines produced including environmental and economic analysis



### **KEY BARRIERS - CHALLENGES**



#### **Financial & market barriers**

- Costs of high-performance solutions
- Slow pace of the EU retrofitting action

#### **Technical challenges**

- Develop multi-price efficient and safe "plug-n-play" modular solutions for easier market acceptance
- Need to address a holistic full-cycle approach on product development to fully achieve decarbonization goals and a real transitioning to energy-efficient buildings

#### **Technical barriers**

- Highly diverse building and façade types, making it difficult to design universal and easily adaptable retrofitting solutions

### **Regulatory and other challenges**

- Design a portfolio of standardized solutions capable of fulfilling different regulatory requirements

- Need to overcome bottlenecks that are still preventing a further industrial uptake of nanomaterials





For further project information, please contact:

#### Jorge Corker

Project coordinator

jcorker@ipn.pt

Phone +351 239 700 968 Fax +351 239 700 965

IPN - LED&MAT

Rua Pedro Nunes

3030 199 COIMBRA

Portugal

Follow latest news on project website and social network profiles.





### THANKS FOR YOUR ATTENTION



Please visit our website
WWW.powerskinplus.eu



Contact us via e-mail info@powerskinplus.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 869898.







# Lightweight switchable smart solutions for energy saving large windows and glass facades

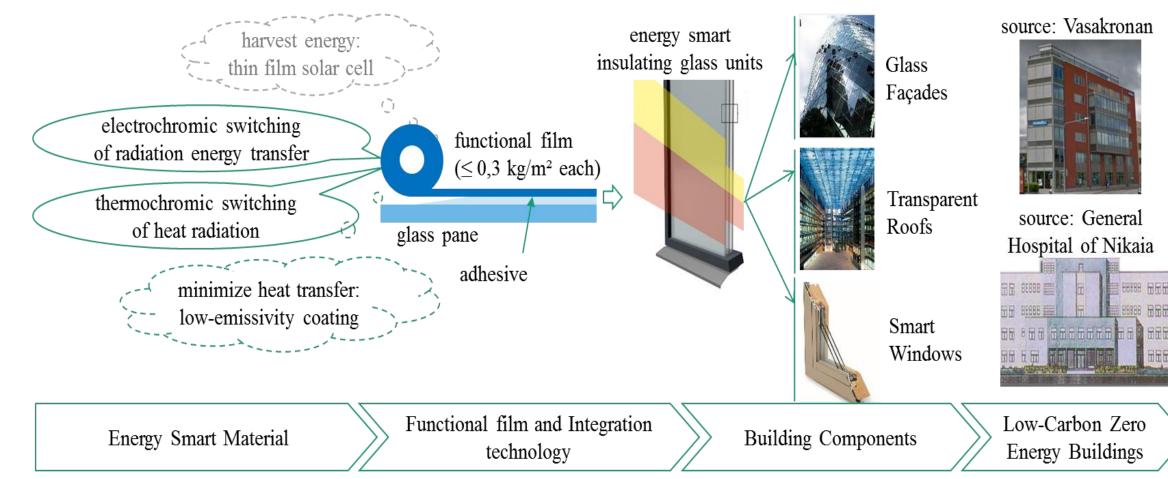
|           | Speaker                |                      |                          | Matthias Fahland                                                                |               |       |  |
|-----------|------------------------|----------------------|--------------------------|---------------------------------------------------------------------------------|---------------|-------|--|
|           | Organisation           |                      |                          | Fraunhofer FEP<br>1 <sup>st</sup> October 2020- 30 <sup>th</sup> September 2023 |               |       |  |
|           | Start /                | end date of proj     | ect 1 <sup>st</sup> Octo | ober 2020- 30"                                                                  | ' September . | 2023  |  |
|           | Fundin                 | g                    | H2020                    |                                                                                 |               |       |  |
|           | Project website        |                      | https:/                  | https://switch2save.eu                                                          |               |       |  |
| 🗾 Fraunh  | ofer<br><sup>ISC</sup> | Chromo <i>Genics</i> | CTEXMEION IN DOLOGI      | UNIVERSITY<br>OF WEST<br>BOHEMIA                                                | AGL           | FASAD |  |
| 🗾 Fraunho | ofer                   | <b>AMIRES</b>        |                          | DUNEMIA                                                                         | Technologies  |       |  |

ΓΕΝΙΚΟ ΝΟΣΟΚΟΜΕΙΟ ΝΙΚΑΙΑΣ ΠΕΙΡΑΙΑ "ΑΓΙΟΣ ΠΑΝΤΕΛΕΗΜΩΝ"



E<sup>2</sup>ARC

Energy Efficient Architecture Renovation Cities

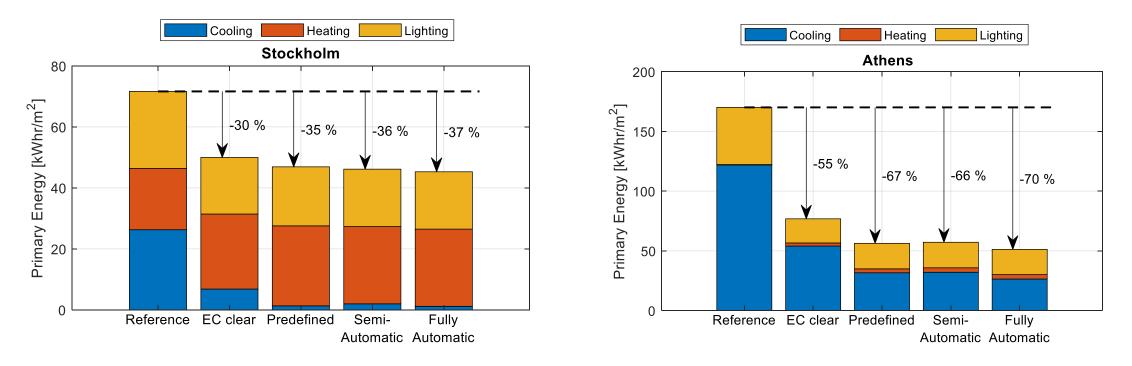

## Project key objectives



- Improved energy efficiency of buildings by smart windows
- Low weight  $\rightarrow$  easy integration into existing buildings
- Reasonable price  $\rightarrow$  affordable integration into existing buildings



## Concept and Methodology






## The solution – Technologies developed



- Improved electrochromic and thermochromic coatings
- Projection of achievable energy savings





 Smart window components ready for the integration in buildings and mockups



large area electrochromic demo (IGU 4.42 m<sup>2</sup>) large area thermochromic demo (30 cm wide continuous roll)



 integration in pilot buildings and mockups (different latitudes, for keeping places warm (EC) and cold (EC+TC))





• Affordable solution: effective large scale manufacturing tested!





Thermochromic materials (VON ARDENNE equipment)

## Key barriers - Challenges



- Manufacturing costs
- Installation costs
- Lifetime expectations in building industry (experimental & pilot buildings with reduced requirement ?)





# **StepUP**: Decarbonisation of the EU building stock: innovative approaches and affordable solutions changing the market for buildings renovation



## Project key objectives





Make renovation more attractive and reliable with a new methodology based on near-real time data intelligence.



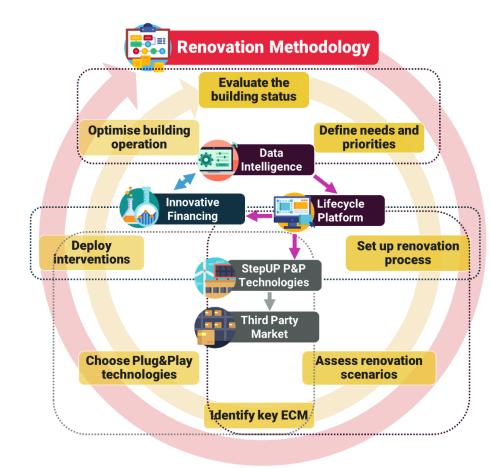
Minimise time on site to 40% of current renovation onsite work by advancing innovative passive and active technologies to a market-ready modular renovation package of Plug & Play Technologies.



Reduce the performance gap to 10% difference between design and operations by developing an integrated life-cycle software platform.



**Optimize renovation investments** by developing innovative financing models for integrated optimization of energy




Accelerate the renovation market via an interoperability protocol for renovation solutions, enabling compatibility with the StepUP solutions to allow the integration of third party market products, fostering an open Plug&Play technological environment accessible to innovative SMEs.



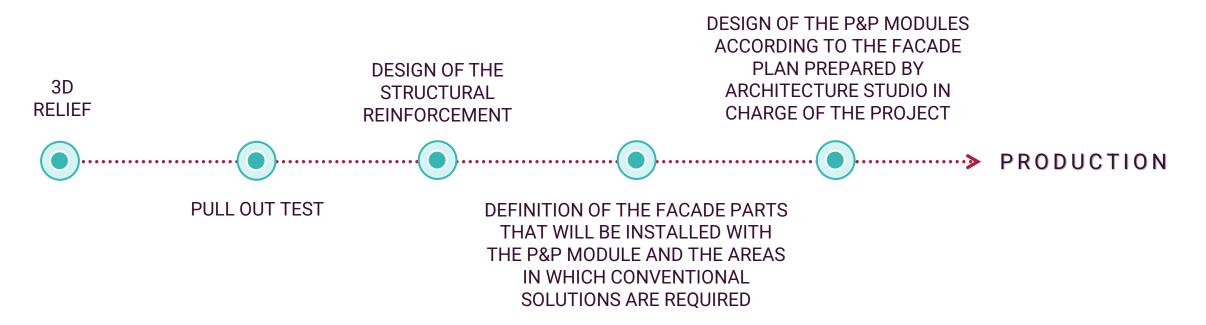
## Concept and Methodology





#### An iterative and holistic methodology

- Methodology for a systematic whole building renovation, incorporating the **stakeholders' needs** at the centre.
- **StepUP** methodology, based in Data Intelligence, has the objective to deliver affordable deep renovation technologies, another step towards EU building decarbonisation.


"At the core of the StepUP project relies an **incremental, iterative renovation methodology** aimed to cover every phase of the renovation process to make each step more effective"



## Concept and Methodology



Methodology followed to realise it:





## The solution – Technologies developed

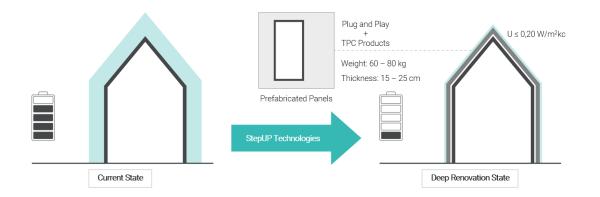
5

6



|  | 1 |  |
|--|---|--|
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |

**Non disruptive and modular system.** The P&P module is installed outside of the building envelope and increase the thermal performance of the building


**Plug&Play hybrid system.** Offers the capability to integrate different subcomponents (active and passive systems) such as windows, different finishes, solar protection

**Performance monitoring.** Real-time data collection through sensors incorporate into the P&P module to validate the energy performance through different iterations of building renovations.

**Offsite preassembly system.** Reduction of installation errors and onsite work by applying P&P preassembled solutions. The disruption in residents' life is reduced significantly.

**Highly customized industrialized P&P module.** The developed modules will be adaptable to different building configurations and local scenarios.

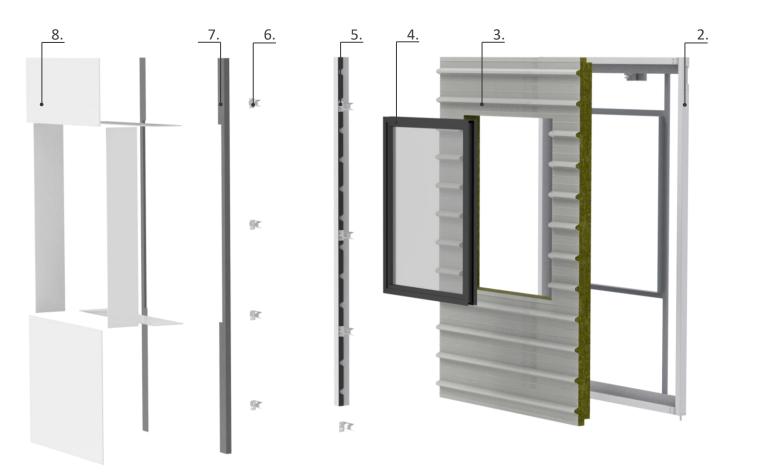
**Improvement in the energy performance of the buildings.** Solution for deep renovation in buildings with high energy consumption. The solution offers tools to reach NZEB buildings.





2




### **INDEX**:

- 1. Module components
- 2. Module types
- 3. Technical details
- 4. Possible integration
- 5. Installation Sequence





# Plug-and-Play solutions of the project **Module components**



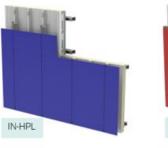


- 1. Anchor system
- 2. 3-mm galvanized steel structure
- 3. Mineral wool or polyurethane sandwich panel
- 4. Windows
- 5. Flashings and protection elements
- 6. Brackets
- L or T profiles in aluminium/steel for the installation of external cladding
- 8. Façade panel



# Plug-and-Play solutions of the project Module types








# Plug-and-Play solutions of the project **Technical details**

| Features                                   | Parameters                                                                                                                                                                                                                |  |  |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Available insulating materials             | <ul><li>Mineral Wool (MW)</li><li>Polyurethane foam (PU)</li></ul>                                                                                                                                                        |  |  |
| Sandwich panel's U value*                  | <ul> <li>- 0,50 - 0,20 W/m2 K (MW)</li> <li>- 0,28 - 0,15 W/m2 K (PU)</li> </ul>                                                                                                                                          |  |  |
| Sandwich panel's Thickness                 | - 80 – 200 mm (MW)<br>- 80 – 150 mm (PU)                                                                                                                                                                                  |  |  |
| Module's Thickness                         | - 175 – 390 mm (MW)<br>- 175 – 340 mm (PU)                                                                                                                                                                                |  |  |
| Module's Width                             | 1300 – 2000 mm                                                                                                                                                                                                            |  |  |
| Module's Height                            | 3000 – 4000 mm                                                                                                                                                                                                            |  |  |
| Module's Weight                            | 250 – 400 kg/module                                                                                                                                                                                                       |  |  |
| Bracket's Resistance                       | Up to 20 kN                                                                                                                                                                                                               |  |  |
| Wall Resistance                            | The minimum value is not defined, a depends on many factors (such as dimen and weight of the P&P module and the sp project requirements of the existing buildin                                                           |  |  |
| Available materials for external finishing | <ul> <li>HPL</li> <li>Rock-fibre compressed Panel (PFRI</li> <li>Composite</li> <li>Ceramic</li> <li>Wood-Polymer Composite (WPC)</li> <li>Composite fibre cement</li> <li>Metal sheets (perforated and stretc</li> </ul> |  |  |
| Fire Reaction and Fire Resistance          | The values need to be evaluated based o local requirements and on the characteristi the project                                                                                                                           |  |  |

\* The U-Value of the overall P&P module can be considered improved by 20% thanks to the air gap ventilation







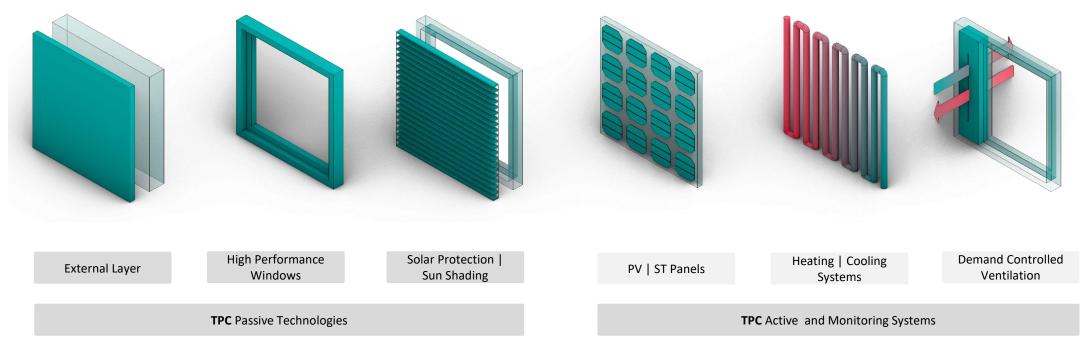








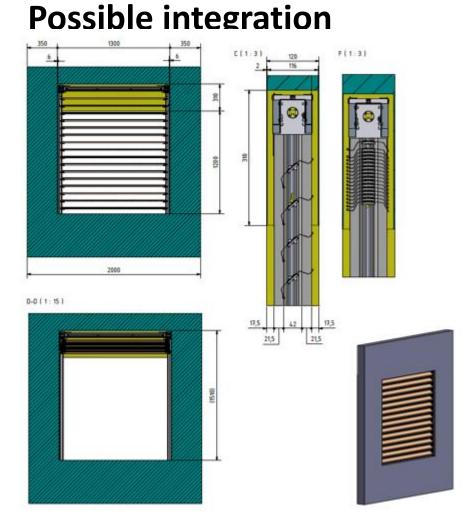







# Plug-and-Play solutions of the project **TPC integration**




The integration of passive and active systems in to the P&P module has been taken into consideration.



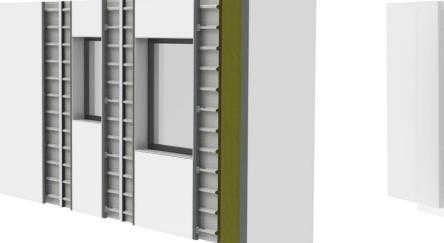
TPC = Technology provider cluster

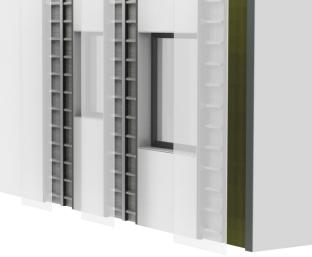


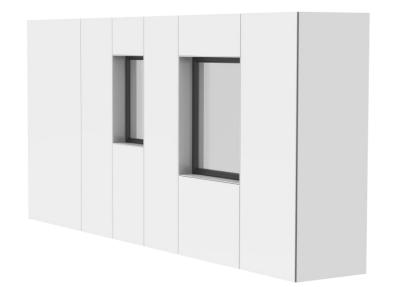
# PREFAB system



The integration of passive systems in to the P&P module has been taken into consideration.


**Foldable and adjustable blinds by Gradhermetic** can be integrated in the façade.


This kind of solution consists of slats which can be oriented from  $0^{\circ}$  to a maximum of  $115^{\circ}$  and can be moved up and down, until achieving a total closure.



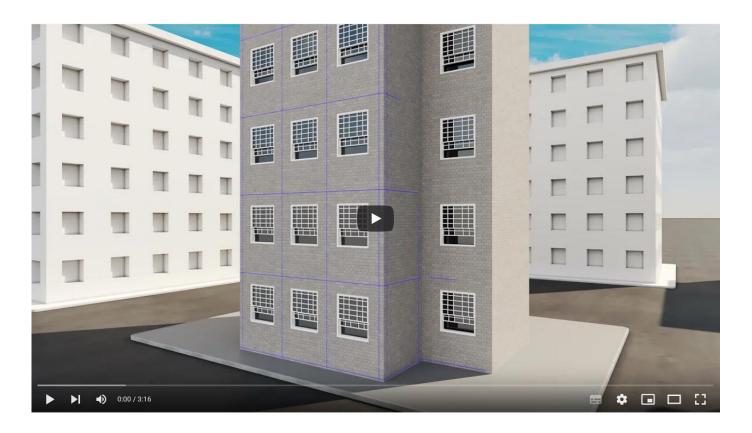

# Plug-and-Play solutions of the project Installation Sequence










 Positioning and installation of Plug&Play modules on the existing façade

**2.** Positioning of jolly modules

**3.** Fixing of the jolly modules to complete the facade



# Plug-and-Play solutions of the project Installation Sequence



6 modules (2000x3700 mm)

ā ā

2 workers for the construction of the modules



(i)

48 working hours to construct the modules

5 hours to install 48 mq on site



## Key barriers - Challenges



- PREFAB systems
- The integration of more **third-party products** should be further developed .
- Installation in a real case pilot to collect information for future improvements.
- Monitoring the energy performance to validate the implementation of the P&P module towards nZEB.
- Hesitation from installers and contractors as the technology is new







#### Tank you!

# Stept

| IES | eureca                                      | l | Advanced Building<br>& Urban Design | <mark>energ</mark> invest | AC<br>R Grupo | PEST SZENTLÖRINC<br>SZENTIMRE |
|-----|---------------------------------------------|---|-------------------------------------|---------------------------|---------------|-------------------------------|
|     | UniSMART<br>Fondazione Università di Padova |   | MANNI GROUP®                        | SUNTHERM                  |               | A MI SZÍVÜGYÜNK               |









HOUSING EUROPE

> Zuyd Research

**TIMBECO** 

**TÊĊ**H

ZU





- DRIVE 0 aims to come to a decarbonization of the EU building stock and to accelerate deep renovation processes by enhancing a consumer centred circular renovation process in order to make deep renovation more attractive for consumers and investors, more environmental friendly.
- The objectives are:
  - 1: To develop proven Plug & Play prefab deep renovation solutions
  - **2:** To provide consumers and potential investors with attractive and understandable information of real total performances
  - **3:** To demonstrate circular renovation solutions in combination with local drivers in live demonstration cases.
  - **4:** To foster new consumer centred business models for circular circular renovation concepts.
  - 5: To roll out the concept on a wider EU scale by involving EU interest groups



# DRIVE SProject Concept

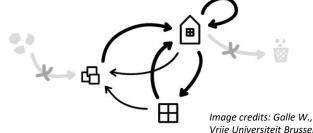





1. Market ready renovation products & concepts  $\rightarrow$  circular renovation products & concepts:

- Based on local availabiilty; Use of bio based materials and components;

**DRIVE Section Section** 


- Emphasis on modular plug & play prefab solutions for building envelope elements and services;
- Automated BIM controlled production processes.
- 2. Developing attractive *consumer centred business models* based on circular renovation concepts.
- 3. Providing occupants with *attractive and understandable* information on building performances in use.
- 4. Providing relevant stakeholders evidence of performance of the developed DRIVE 0 solutions by local study and demonstration cases initiated by 'local drivers'. Zuvd





W., De Temmerman N.

Researc



# DRIVE The solution – Technologies developed



9/8/2022, Sustainable Places 2022 Factory 0 compact installation kits

ALIVA Alucovering facade

Zuyd Research



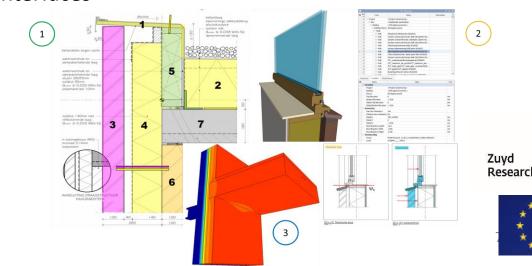


# **DRIVE** The solution – Technologies developed





#### Prefabricated 3D extensions


(https://www.emergo.nl/producten-en-oplossingen/woonmodules)



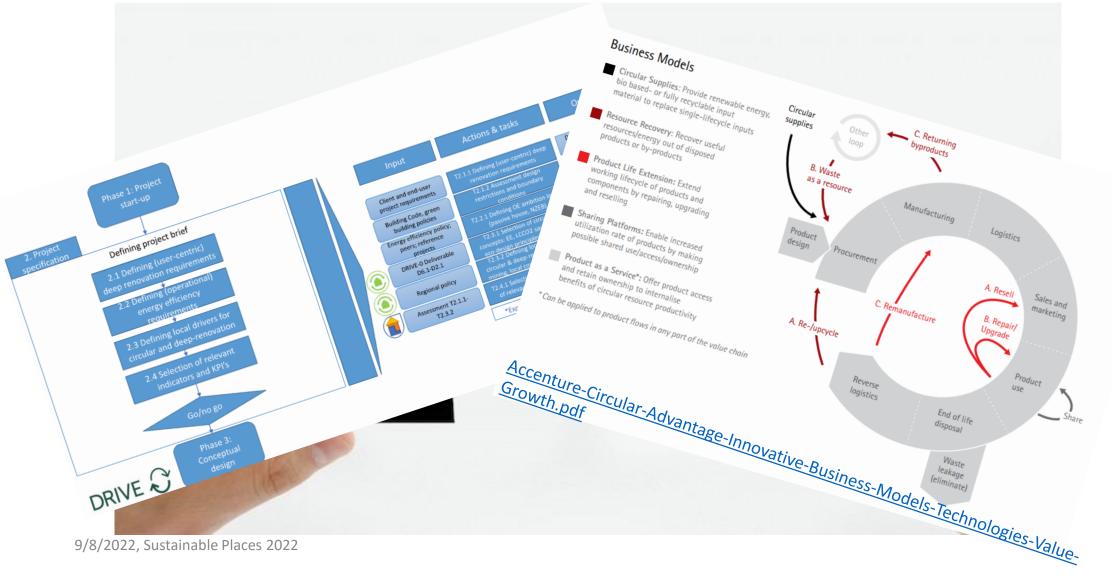
Compact building services (HVAC) kits



#### Interfaces



# **DRIVE** The solution – Technologies developed




ΖU

D

Zuyd

Research







#### **Barriers:**

- Legal & regulatory barriers due to rigid building, product regulations, guarantees
- Lack of interest & trust in circular modular building components from home-owners

### **Challenges:**

- Financial, legal & operational risk increase in circular business models
   & therefore challenges in circular value chain creation
- Low market price of virgin materials compared to recycled materials





### **Positioning paper:**

### Boosting the renovation wave with Zero Energy Renovation Kits: mapping challenges, barriers and strategies

John van Oorschot



**Speaker** 

**Funding** 

**Organisation** 

**Project website** 







ZU

Zuyd Research







### Boosting the renovation wave with Zero Energy Renovation Kits: mapping challenges, barriers and strategies

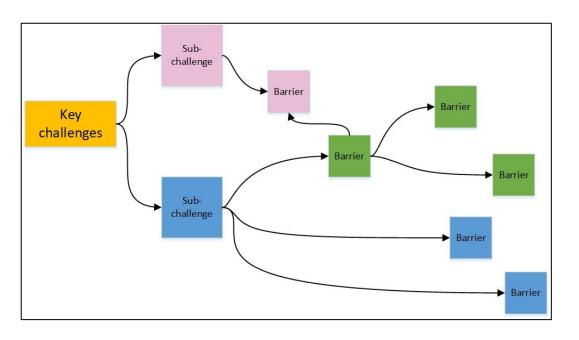
### **Zero Energy Renovation Kits:**

- > Are defined as integrated solutions which includes the envelope, the technical building systems and elements, the appliances, the energy production systems which allow the delivery of a net zero energy consumption building (Saheb, 2016)
- >Typically characterized by a one-to-one mapping between functions and physical subsystems and have standardized, decoupled interfaces (Ulrich, 1995)



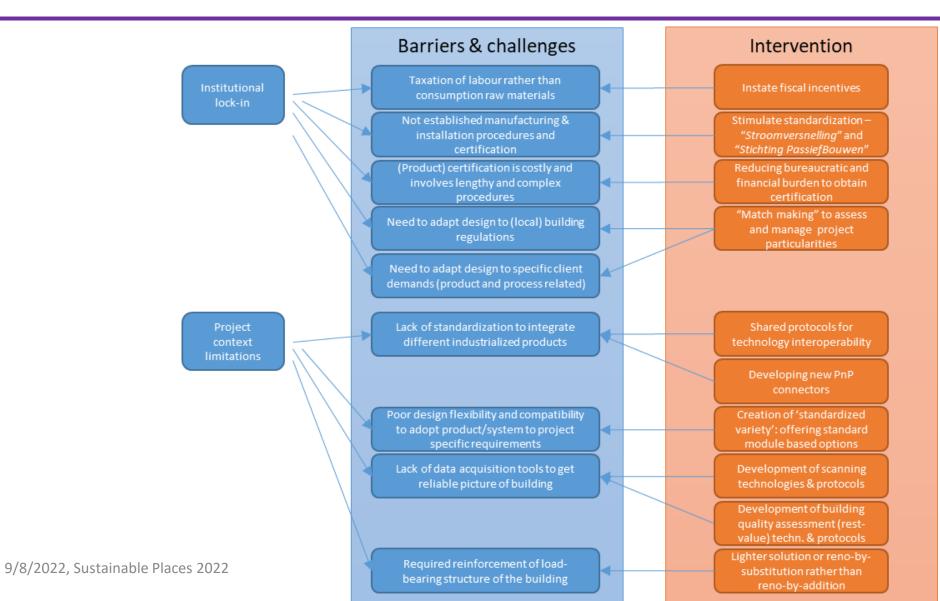


- Despite its potential many related innovations seem to fall into a chasm after they have been adopted by early adopters and subsequently fail to be adopted at large scale
- ➢What is missing are context specific, empirical studies unravelling the barriers and interventions strategies innovators have to deal with developing and introducing industrial and modular Zero Energy Renovation Kits.


Which technological, market, financial, legal and institutional <u>barriers</u> hinder the market uptake of modular and industrial Zero Energy Renovation Kits, and which <u>strategies</u> could overcome these challenges and barriers?

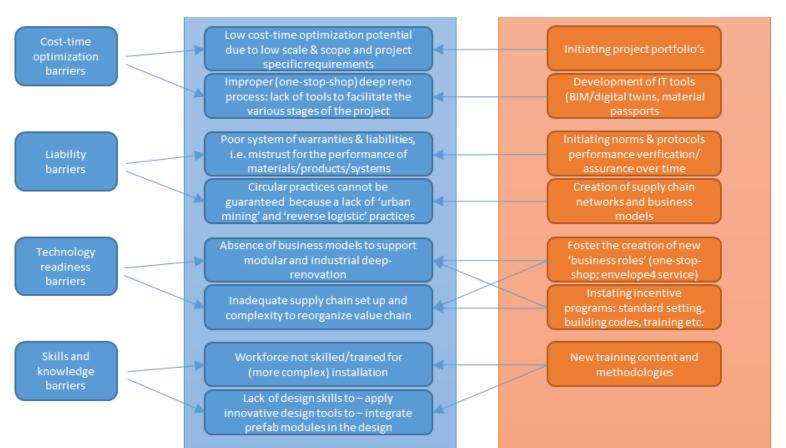







<u>SP workshop - Industrialization of building envelope kits, Online</u> Whiteboard for Visual Collaboration (miro.com)



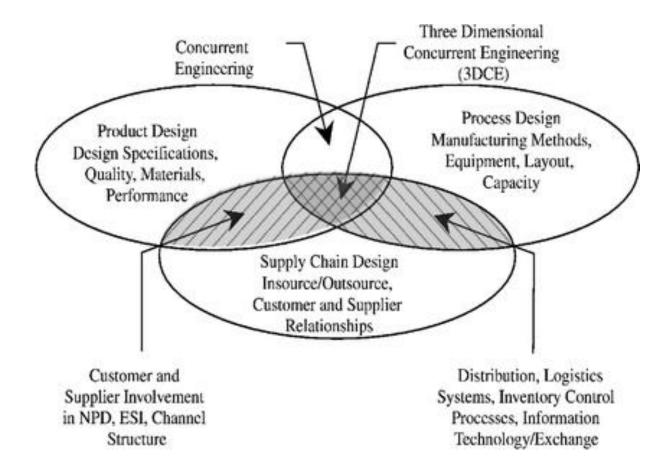











9/8/2022, Sustainable Places 2022

Zuyd Research







Zuyd Research YD

9/8/2022, Sustainable Places 2022

Source: Ellram et al. (2007) <u>Ellram, L.</u>, <u>Tate, W.</u> and <u>Carter, C.</u> (2007), "Product-process-supply chain: an integrative approach to three-dimensional concurrent engineering", <u>International</u> *Journal of Physical Distribution & Logistics Management*, Vol. 37 No. 4, pp. 305-330.



#### Thank you for your attention!



John.vanoorschot@zuyd.nl

#### Further read (published open source):

van Oorschot, J. A., Halman, J. I., & Hofman, E. (2021). The adoption of green modular innovations in the Dutch housebuilding sector. Journal of Cleaner Production, 319, 128524 <u>https://doi.org/10.1016/j.jclepro.2021.128524</u>

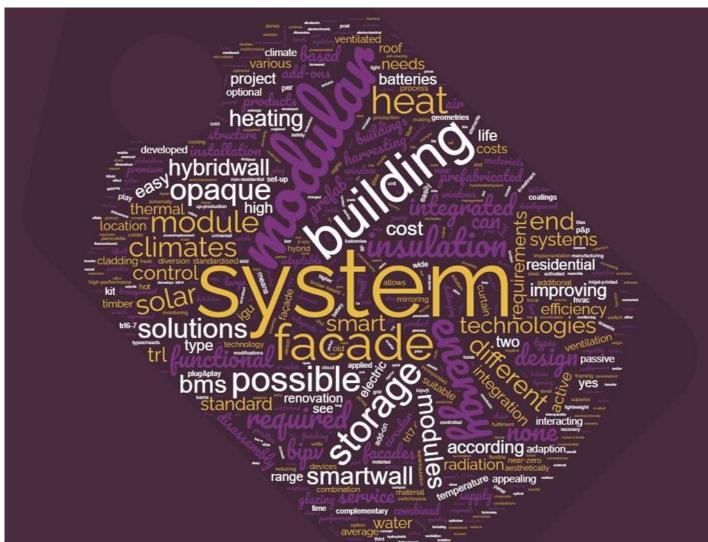




### **ROUND TABLE I:**

### MAPPING and "CLUSTERING" OF TECHNOLOGIES DEVELOPED IN THE PROJECTS

**Federico Noris** 


| Project        | Technology (TRL)                                                                            | <b>Active</b> (e.g., RES, lighting,<br>HVAC, BEMS, others)                           | Passive (e.g.,<br>insulation,<br>windows, passive<br>ventilation,<br>others) | Short descr.                                                                                                                                                                                                                                                                                                                                                                               | Building typology target<br>(e.g., by use, by type, by<br>shape, by size) | Climate &<br>external factors<br>enabling | Potential synergies<br>between<br>technologies | Potential benefits/issues<br>tackling                                                                                                                                                                                                                                                                                                                      | Potential challenges for<br>deployment &<br>commercialisation                                                                                                                                                                                                                                                                                                                 | Control & automation                                                  |
|----------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| <u>ENSNARE</u> | Modular facade<br>(TRL6)                                                                    | integrated solar system with<br>PV, ST, PVT                                          | insulation                                                                   | modular prefabricated aluminium<br>based frame with plug&play<br>standardised technologies                                                                                                                                                                                                                                                                                                 | residential                                                               | All climate and                           | see active column                              | quick installation,<br>customizable, no scaffolding,<br>easy access/replacement of<br>technologies                                                                                                                                                                                                                                                         | Challenging for some<br>geometries, additional costs,<br>additional weight, maintenance                                                                                                                                                                                                                                                                                       | none of the<br>modular<br>structure, but<br>yes of active<br>elements |
|                | Standard PS+<br>transparent<br>Modules<br>(Average TRL at<br>the end of the<br>project - 8) | None (Integration possible,<br>see premium version)                                  | IGU insulation                                                               | Conventional triple-glazed low-e<br>IGU with optional multifunctional<br>coatings possible (anti-reflective,<br>hydrophobic, self-cleaning and self-<br>healing) (TRL8-9)                                                                                                                                                                                                                  | Curtain wall facades<br>Residential and non-<br>residential buildings     | -                                         | ?                                              | Superior insulation<br>Modular system<br>Additional functional coatings                                                                                                                                                                                                                                                                                    | None (established technology)                                                                                                                                                                                                                                                                                                                                                 | None                                                                  |
| POWERSKIN<br>+ | Premium PS+<br>transparent<br>Modules<br>(Average TRL at<br>the end of the<br>project - 7)  | Yes, two options:<br>1 – Thermal harvesting and<br>storage system add-on<br>2 – BiPV |                                                                              | Standard module adaption plus:<br>1 – Capillary microfluidic heat<br>storage diversion system add-on<br>(thermal harvesting combined with<br>a heat pump). (TRL6-7)<br>2 - Semi-transparent inkjet-printed<br>perovskite BiPV modules (TRL7)<br>3 - BMS with scalable battery units<br>operating with post EV or new Li-ion<br>batteries. Compatible with the<br>electric grid<br>(TRL6-7) | Curtain wall facades                                                      | Solar radiation<br>and temperature        | ?                                              | Different add-ons possible to<br>be integrated (heat storage<br>diversion, energy harvesting<br>and storage) for near-zero or<br>positive energy building<br>solutions<br>Functional modular system<br>design according to the type<br>of building, location and<br>functional needs<br>Modular system (easy<br>disassembly at the end of<br>service life) | Costs of high-performance<br>solutions<br>Scale up-production<br>Highly diverse building and<br>façade types/needs making it<br>difficult to design universal and<br>easily adaptable solutions<br>Add-ons framing adaption<br>Shortage of material supply<br>(batteries)<br>Service safety requirements<br>(batteries)<br>Fulfilment of different<br>regulatory requirements | Required                                                              |
|                | Standard PS+<br>Opaque Modules<br>(Average TRL at<br>the end of the<br>project - 7)         | None (Integration possible,<br>see premium version)                                  | solutions<br>U-value stating<br>from 0,098 W/m <sup>2</sup> K                | Opaque module with different<br>optional skins (composite, opacified<br>glass, aluminium) and a wide range<br>of VIP thicknesses depending on<br>thermal requirements (TRL7)                                                                                                                                                                                                               | Curtain wall facades                                                      | -                                         | ?                                              | Superior insulation for the<br>least thickness<br>Modular system (easy<br>disassembly at the end of<br>service life)                                                                                                                                                                                                                                       | Cost (superinsulation)<br>Dimension restrictions                                                                                                                                                                                                                                                                                                                              | None                                                                  |
|                |                                                                                             | <b>RES</b><br>Yes, two options:<br>1 – Activated PCMs storage                        |                                                                              | Standard module adaption plus:<br>1 – Heating foil activated PCMs heat<br>storage system (TRL7)                                                                                                                                                                                                                                                                                            |                                                                           |                                           |                                                | Different add-ons possible to<br>be integrated (heat storage,<br>energy harvesting and<br>storage) for near-zero or<br>positive energy building                                                                                                                                                                                                            | Costs of high-performance<br>solutions<br>Scale up-production<br>Highly diverse building and<br>façade types/needs making it                                                                                                                                                                                                                                                  |                                                                       |

| Project            | Technology (TRL)                                                                        | <b>Active</b> (e.g., RES, lighting,<br>HVAC, BEMS, others)                                                                                                                                                 | Passive (e.g.,<br>insulation,<br>windows, passive<br>ventilation,<br>others)                                                                                                                                                                                                       | Short descr.                                                                                                                                                                                        | <b>Building typology target</b><br>(e.g., by use, by type, by<br>shape, by size)                                                                                             | Climate &<br>external factors<br>enabling                                                                                                                              | Potential synergies<br>between<br>technologies                                                                                                                                           | Potential benefits/issues<br>tackling                                                                                                                                                                                                                                                                                                                            | Potential challenges for<br>deployment &<br>commercialisation                                                                                                                                         | Control &<br>automation                                                                                         |
|--------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| PLURAL             | SmartWall<br>systems (TRL5)                                                             | SmartWall: PVs, Solar heating<br>systems, energy storage,<br>smart monitored and<br>controlled                                                                                                             | SmartWall: eco-<br>insulation, high<br>efficiency<br>windows with<br>shaving rollers and<br>low e-value<br>glazing, IR<br>reflective and/or<br>absorbing<br>coatings,<br>innovative low u-<br>value thermal<br>paste (mortar),<br>active and passive<br>fire-protection<br>system. | SmartWall: modular flexible system<br>which can integrate a range of<br>technologies according to building<br>and owner's requirements.                                                             | SmartWall: Facades of<br>the building (can be<br>installed either externally<br>or internally in the<br>building)                                                            | SmartWall: all<br>climates but more<br>suitable to<br>Mediterranean<br>and Oceanic<br>climate zones.<br>Technical<br>modifications<br>required for colder<br>climates. | SmartWall: A very<br>wide range of<br>commercial<br>materials, products<br>components can be<br>integrated into the<br>system.                                                           | SmartWall: improving energy<br>efficiency, centralised control<br>of HVAC system, ease of<br>installation, reduction of cost.<br>Different add-ons possible to<br>be integrated (heat storage,<br>energy harvesting and<br>storage) for near-zero or<br>positive energy building<br>solutions                                                                    | SmartWall: Challenging for<br>some geometries. Some HVAC<br>technologies are not suitable for<br>installation on cold climates (e.g.<br>fan coils), increased materials<br>costs due to energy crisis | SmartWall:<br>Integrated smart<br>control system<br>at local, remote<br>and cloud level.                        |
|                    | HybridWall                                                                              | Hybridwall:<br>Air renovation, PV<br>photovoltaics, monitored and<br>controlled<br>Hybridwall:<br>Isolation,<br>ventilated facade,<br>high efficiency<br>windows louvers<br>requirements. Based on the new |                                                                                                                                                                                                                                                                                    | Modular flexible system which can<br>integrate a range of technologies<br>according to building and owner's<br>requirements. Based on the new<br>hybrid texTILES constructive system                | HybridWall: Facades of<br>the building installed<br>externally with large<br>formats very fast to<br>install.                                                                | HybridWall:<br>All climates but<br>more suitable to<br>Mediterranean<br>and Oceanic<br>climate zones.<br>Technical<br>modifications<br>required for colder<br>climates | HybridWall:<br>Open modular<br>system made of<br>small components<br>which means that a<br>wide range of<br>finishing materials<br>and PV tiles can be<br>incorporated to the<br>system. | HybridWall:<br>Light solution perfect for new<br>and renovation projects.<br>Modular solutions 100% done<br>with CNC parametric machines<br>which means low cost for<br>customising project<br>dimensions.<br>Fast installation to reduce<br>cost.<br>System based on hybrid<br>texTILES which means<br>architectural finishes with<br>cladding tiles solutions. | <b>HybridWall:</b><br>Challenging for some<br>geometries (balconies) which<br>increases the cost.                                                                                                     | HybridWallInteg<br>rated smart<br>control Unit<br>Ventilation<br>system at local,<br>remote and<br>cloud level. |
|                    | ConExWall                                                                               | External facade heating, PV,<br>PVT, decentralized ventilation<br>with heat recovery                                                                                                                       | Thermal<br>insulation,<br>Windows                                                                                                                                                                                                                                                  | Prefabricated facade modules with<br>heating layer on the opaque part<br>which heats the building through<br>the old facade. Including further<br>optional functions like mentioned<br>on the left. | Medium and large size<br>buildings with high share<br>of opaque surface and old<br>facade with U-value of<br>approx. >1 W/m2K<br>(possibly after removing<br>old insulation) | All climates, but<br>especially for cold<br>climates                                                                                                                   | Can be combined<br>easily with third<br>parties products                                                                                                                                 | Fast building renovation and<br>switch to low-temperature<br>heat distribution system while<br>building is occupied (switch<br>from fossil to heat pump).                                                                                                                                                                                                        | Unusual concept of heating<br>building through facade<br>(acceptance, constructional<br>details). Long reaction time of<br>heating system (if room<br>temperature should be<br>changed).              | Required                                                                                                        |
| <u>SWITCH2SAVE</u> | Electrocchromic<br>glazing (EC,<br>TRL:6-7)<br>Thermochromic<br>glazing (TC, TRL:<br>4) | EC:<br>active control by electric<br>signal<br>TC: passive control by<br>ambient temperature                                                                                                               | EC:<br>Improvement of<br>window insulation<br>TC:<br>improvement of<br>window and roof<br>panel efficiency                                                                                                                                                                         | Thin layer system in an IGU for<br>adaptive change of optical glass<br>properties                                                                                                                   | non-residential (in<br>Switch2Save) general: no<br>restriction                                                                                                               | Both TC and EC:<br>Energy for heating<br>and air<br>conditioning                                                                                                       | Switch2Save:<br>EC and TC combined<br>;<br>other combinations<br>are possible as well                                                                                                    | Benefit: improving energy<br>efficiency of buildings;<br>challenges tackled: price<br>/performance ratio,reliable<br>manufacturing, readiness for<br>retrofit                                                                                                                                                                                                    | implementation in<br>manufacturing lines,<br>cost for installation;<br>usage of critical materials                                                                                                    | for EC: done<br>for TC: not<br>necessary                                                                        |

| DRIVE 0 | 2D facade<br>elements (TRL 7)                          | None, but application of<br>BIPV(t) possible                                                                                                                                                                                                                                                                                    | Timber or steel<br>based structure<br>with insulation<br>and various types<br>of cladding                                                                                                                            | Five different circular and modular<br>prefabricated based structures with<br>plug&play standardised<br>technologies, various types of<br>cladding possible                                                                                                                                                                                                                                                                                                                                      | Residential                                                       | All climates                                                                                                                                  | Can be applied in<br>combination with<br>the other two<br>modular products<br>systems developed            | Functional modular system<br>design according to the type<br>of building, location and<br>functional needs<br>Modular system (easy<br>disassembly at the end of<br>service life) | Development of<br>complementary process and<br>supply chain set-up mirroring<br>the circular and modular design<br>of the product system | None                                                         |
|---------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|         | 3D extension<br>modules (TRL 5-<br>6)                  | None, but application of<br>BIPV(t) possible                                                                                                                                                                                                                                                                                    | Timber or steel<br>based structure<br>with insulation<br>and various types<br>of finishing                                                                                                                           | Depending on the context per<br>country, various circular and<br>modular prefabricated based<br>concepts with plug&play<br>standardised technologies, various<br>types of cladding possible                                                                                                                                                                                                                                                                                                      | Residential                                                       | All climates                                                                                                                                  | Can be applied in<br>combination with<br>the other two<br>modular products<br>systems developed            | Functional modular system<br>design according to the type<br>of building, location and<br>functional needs<br>Modular system (easy<br>disassembly at the end of<br>service life) | Development of<br>complementary process and<br>supply chain set-up mirroring<br>the circular and modular design<br>of the product system | None                                                         |
|         | Prefab building<br>services (HVAC)<br>skids<br>(TRL 5) | Photovoltaics part of the<br>system                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                    | The prefab building services skid is<br>best described as a compact,<br>completely integrated energy<br>module. The skid includes all the<br>devices required for an all-electric<br>home in The Netherlands:<br>- Air to water heat pump<br>- Hot water vessel (150 or 200<br>liters)<br>- Solar inverter (optional)<br>- Ventilation with heat recovery<br>- Smart Energy Management<br>o Energy meters<br>o Gateway with software for<br>monitoring and controlling all<br>connected devices. | Residential                                                       | Needs adaptation<br>per climate zone                                                                                                          | Can be applied in<br>combination with<br>the other two<br>modular products<br>systems developed            | Functional modular system<br>design according to the type<br>of building, location and<br>functional needs<br>Modular system (easy<br>disassembly at the end of<br>service life) | Development of<br>complementary process and<br>supply chain set-up mirroring<br>the circular and modular design<br>of the product system | Required                                                     |
| Step UP | Pre-assembled<br>enveloped panel                       | None but integration is<br>possible in two scenarios:<br>1 Integration in the P&P<br>façade module (It should be<br>future studied, for exemple<br>PV panels)<br>2 In a deep renovation<br>scenario, when the active<br>systems are not located in<br>the facade, the system allows<br>the passage of the facilities<br>throug. | P&P Module:<br>Insulation<br>incorporated in<br>the module (U<br>value starting<br>from 0,40)<br>Other passive<br>integrations:<br>Integration of<br>Blinds for sun<br>protection and<br>High performance<br>windows | Plug and Play modular and offsite<br>preassembled envelope system.<br>The P&P module designed in the<br>StepUp project, is a hybrid module<br>that allows different<br>configurations, i.e. opaque and<br>transparent systems, and also<br>allows the implementation of<br>passive and active solutions in the<br>module.                                                                                                                                                                        | General renovation<br>market, not specific to a<br>building type. | All climates but<br>more suitable to<br>climates with high<br>solar radiation<br>since the Plug and<br>Play module is a<br>ventilated façade. | TPC protocol to<br>enable adaptation<br>with other plug and<br>play technology, or<br>third party products | Reducing time on site,<br>improving energy<br>performance, interoperable<br>with other technologies                                                                              | increase in raw material costs<br>leading to higher production                                                                           | No control and<br>automation but<br>monitoring<br>technology |

### Word Cloud







### **ROUND TABLE II:**

### HOW DO THE "CLUSTERED" TECHNOLOGIES PERFORM?

Stefano Avesani

### Part 2, nZEB: objectives

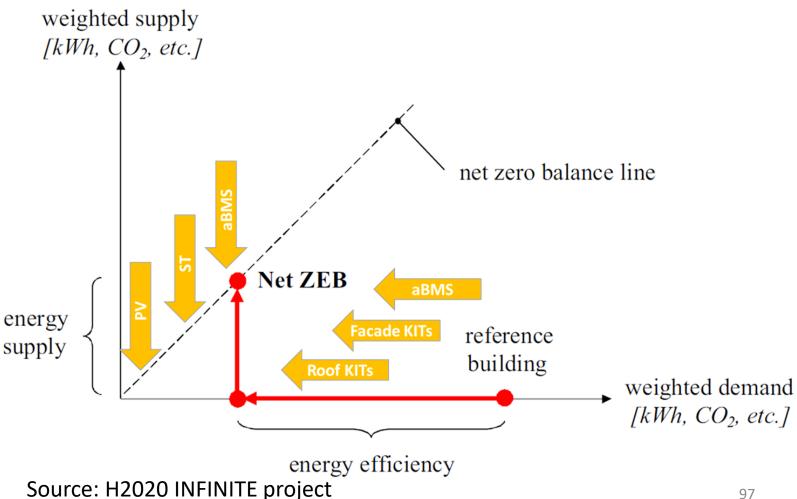


**HOW DO THE "CLUSTERED" TECHNOLOGIES PERFORM**? Roundtable discussion with members of the project consortia and workshop attendants to assess the technology potential to contribute towards NZEB and positive energy targets. Indicative questions to be answered:

- TOWARDS NZEB: Which technologies can contribute to the NZEB / Positive Energy targets? Can we achieve energy positive deeply renovated residential buildings with Plug-and-Play hybrid systems?
- **Challenges and threats:** OPEN questions (such as safety, standardization, manufacturing, business models, market)

### Part 2, nZEB: expected outcomes




Answer to the overall question: how do techs performs in nZEB vision?

- List of possible KPIs
- Methodologies to calculate them

Thanks to our common discussion we will be able to work offline in mapping that figure of performances for each project technologies / categories



- Impact on the whole building energy balance (e.g. primary energy, CO2 eq,...)
- PRO: directly linked to nZEB
- CONS:
  - complex standardization to be able to compare diff solutions
  - How to visulise costs?





 Impact on the whole building energy balance maybe with a reference building?

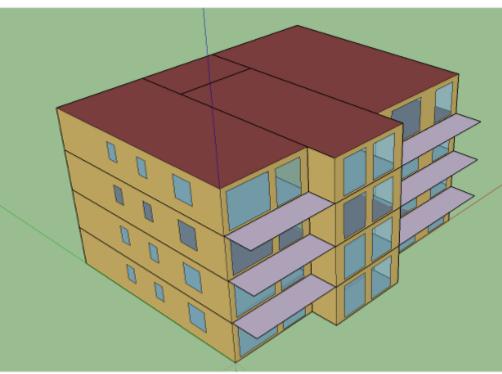



Figure 6: Illustration of the case study Parkcarré; screenshot from SketchUp Make.

https://www.cravezero.eu/wpcontent/uploads/2020/05/CRAVEzero\_D42\_Optimized%20Solut ion%20Sets.pdf

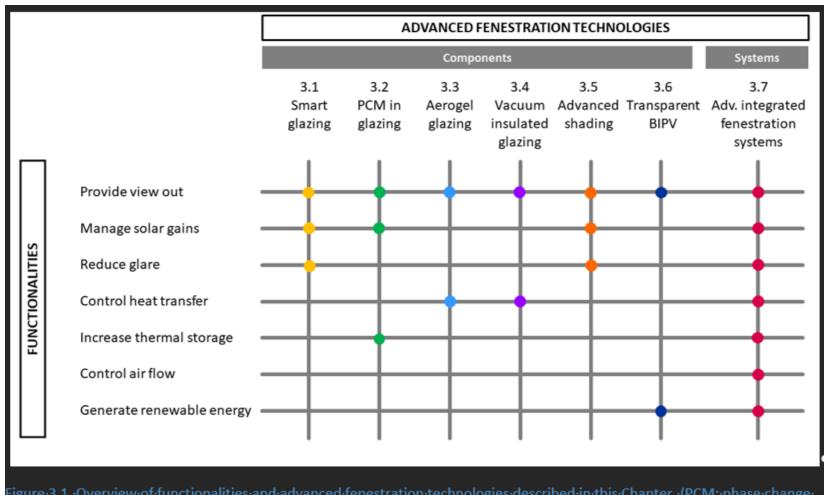


Table 3.1:

 Table format and solutions adopted in different contexts (project).. Maybe highlight with color different nZEB levels reached (in terms of yearly balance?!)

https://www.conzebs.eu/images/ D5.1\_Solution%20sets%20and%2 0Technologies%20in%20NZEBs%2 0-%20FinalVersion.pdf

|     |             | Text                              | DK-typ | DK-SS1 | DK-SS | DK-SS: | DK-SS/ | DK-SS | DE-typ | DE-SS2 | DE-SS3 | DE-SS7 | DE-SS8 | IT-typ | ITR-SS | ITR-SS | ITR-SS | ITR-SS | ITT-SS: | ITT-SS | ITT-SS | ITT-SS | ITT-SS! | SI-typ | SI-SS1 | SI-SS2 | SI-SS3 | SI-SS4 |
|-----|-------------|-----------------------------------|--------|--------|-------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|---------|--------|--------|--------|--------|--------|
| - [ | Envelope    | Autoclaved aerated concrete       |        |        |       |        |        |       |        |        |        |        |        |        | х      | х      | х      | х      | х       |        | х      |        |         |        |        |        |        |        |
|     |             | Mono-block windows                |        |        |       |        |        |       |        |        |        |        |        |        | х      | х      | х      | х      | х       | х      | х      | х      | х       |        |        |        |        |        |
|     |             | Reduced insulation, facade        |        |        | х     |        | х      | х     |        | х      | х      | х      | x      |        |        |        |        |        |         |        |        |        |         |        |        |        |        |        |
|     |             | Reduced insulation, roof          |        |        | х     |        | х      | х     |        | х      | х      | х      | x      |        |        |        |        |        |         |        |        |        |         |        |        |        |        |        |
|     |             | Reduced insulation, ground floor  |        |        | х     |        | х      | х     |        | х      | х      | х      | х      |        |        |        |        |        |         |        |        |        |         |        |        |        |        |        |
|     |             | Improved insulation, facade       |        | х      |       |        |        |       |        |        |        |        |        |        |        |        |        |        |         | х      |        | х      | х       |        |        |        |        |        |
|     |             | Increased ground floor insulation |        |        |       |        |        |       |        |        |        |        |        |        |        |        |        |        |         | х      |        | х      | х       |        |        |        |        |        |
|     |             | Improved insulation, roof         |        |        |       |        |        |       |        |        |        |        |        |        |        |        |        |        |         | х      |        | х      | х       |        |        |        |        |        |
|     |             | 2-layer windows                   |        |        |       |        |        |       |        | х      | х      | х      | х      |        |        |        |        |        |         |        |        |        |         |        |        |        |        |        |
|     |             | 3-layer windows                   | х      |        |       |        |        |       | х      |        |        |        |        |        |        |        |        |        |         |        |        |        |         |        |        | х      | х      | х      |
|     |             | 4-layer windows                   |        |        |       | х      |        |       |        |        |        |        |        |        |        |        |        |        |         |        |        |        |         |        |        |        |        |        |
|     |             | Increased airtightness            |        |        |       |        |        |       |        |        |        |        |        |        |        |        |        |        |         |        |        |        |         |        | х      | х      | х      | х      |
|     | Ventilation | MVHR                              | х      |        |       |        |        |       |        |        |        |        |        |        |        |        |        |        |         | х      |        | х      |         |        | х      | х      | х      |        |
|     |             | MVHR, moisture controlled         |        |        |       |        |        |       |        |        | х      |        |        |        |        |        |        |        |         |        |        |        |         |        |        |        |        | х      |
|     |             | Decentral ventilation + HR        |        |        |       |        | х      | х     |        | х      |        |        |        |        |        |        |        |        |         |        |        |        |         |        |        |        |        |        |
|     |             | Exhaust ventilation + HP          |        |        |       |        |        |       |        |        |        |        | x      |        |        |        |        |        |         |        |        |        |         |        |        |        |        |        |
|     |             | Exhaust ventilation without HR    |        |        |       |        |        |       | х      |        |        | x      |        |        |        |        |        |        |         |        |        |        |         |        |        |        |        |        |
|     |             | Hybrid mechanical and NV          |        |        |       | х      |        |       |        |        |        |        |        |        |        |        |        |        |         |        |        |        |         |        |        |        |        |        |
|     |             | Exhaust air HP -> air             |        |        |       |        |        |       |        |        | х      |        |        |        |        |        |        |        |         |        |        |        |         |        |        |        |        |        |
| - [ | DHW         | Energy efficient taps             |        |        |       |        | х      |       |        |        |        |        |        |        |        |        |        |        |         |        |        |        |         |        |        |        |        |        |
|     |             | HR Gray waste water               |        |        |       | х      |        |       |        | х      | х      |        |        |        |        |        |        |        |         |        |        |        |         |        |        |        |        |        |
| 1   |             | Electric DHW heating              |        |        |       |        |        |       |        | х      | х      |        |        |        |        |        |        |        |         |        |        |        |         |        |        |        |        |        |
| - [ | Generation  | District heating and DHW          | х      | х      | х     | х      | х      | х     |        |        |        | х      |        |        |        |        |        |        |         |        |        |        |         |        | х      |        |        |        |
|     |             | HP air-water, heating & DHW       |        |        |       |        |        |       |        |        |        |        |        |        |        | х      |        |        |         |        | х      | х      |         |        |        | х      |        | х      |
|     |             | Exhaust air HP -> heating         |        |        |       |        |        |       |        |        |        |        | х      |        |        |        |        |        |         |        |        |        |         |        |        |        |        |        |
|     |             | Exhaust air HP -> DHW             |        |        |       |        |        |       |        |        |        |        | х      |        |        |        |        |        |         |        |        |        |         |        |        |        |        |        |
|     |             | Condensing gas boiler             |        |        |       |        |        |       | х      |        |        |        | х      |        | х      | (x)    | х      | х      | х       | х      | (x)    | (x)    | х       |        |        |        | х      |        |
| 1   |             | HP air, DHW                       |        |        |       |        |        |       |        |        |        |        |        |        |        |        |        |        |         |        |        |        |         |        |        |        | х      |        |
|     | Heating     | Heating via ventilation system    |        |        |       |        |        |       |        |        | х      |        |        |        |        |        |        |        |         |        |        |        |         |        |        |        |        |        |
|     |             | Electric emitters                 |        |        |       |        |        |       |        | х      |        |        |        |        | х      | х      | х      | х      | х       | х      | х      | х      | х       |        |        |        |        |        |
| -[  | Cooling     | In any form                       |        |        |       |        |        |       |        |        |        |        |        |        |        |        |        |        |         |        |        |        |         |        |        |        |        |        |
|     | RES         | PV panels on roof                 |        |        |       |        |        | х     |        | х      |        |        | х      |        |        |        | х      | (x)    |         |        |        |        | х       |        |        |        |        | х      |
|     |             | Solar heating, DHW                |        |        | х     |        |        |       |        |        | -      | -      | -      |        | х      | -      | х      | х      |         |        | -      | -      | х       |        |        |        |        |        |
|     |             | Solar heating, heating & DHW      |        |        |       |        |        |       | х      |        |        |        |        |        |        |        |        |        | х       | х      |        |        |         |        |        |        |        |        |
|     |             | Heat pump                         |        |        |       |        |        |       |        |        | х      |        | х      |        |        | х      |        |        |         |        | х      | х      |         |        |        | х      | х      | х      |


2 2 2 3 4 M

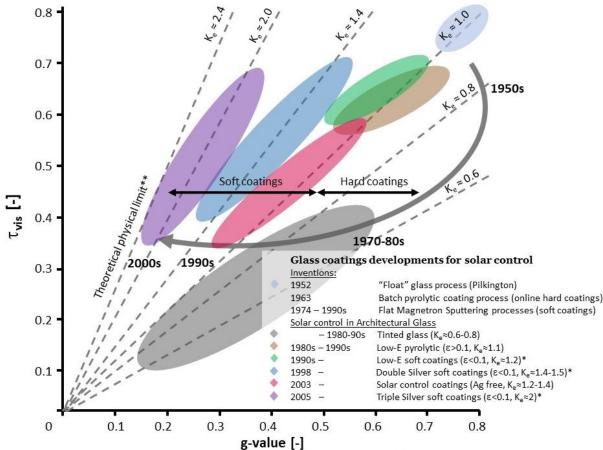
A summary of technologies used in national solution sets.

### Possible visual outcomes



 Qualitative analysis per kind of functionality (e.g. reducing thermal losses, air tightness, air quality, RES energy generation, cost...)

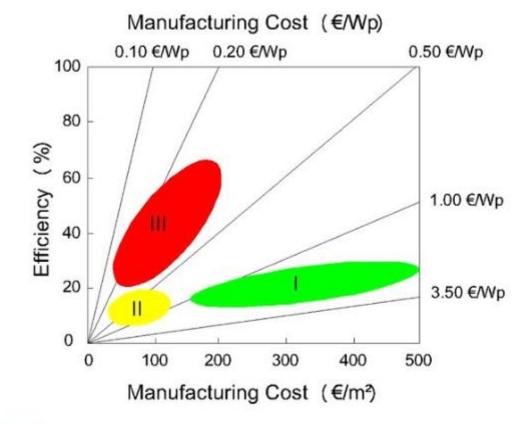



igure·3.1.·Overview·of·functionalities·and·advanced·fenestration·technologies·described·in·this·Chapter.·(PCM:·phase·change· naterial,·VIG:·vacuum·insulation·glazing,·DSF:·double-skin·façade,·AIF:·advanced·integrated·façade)¶



101

### Part 2, nZEB: Possible visual outcomes


- Performance based (for techs in the same category)
- PRO: Possibility to map techs KPIs
- CONS:
  - Difficult to be directly linked to nZEB



<sup>g-value [-]</sup> Solar control in architectural glazing (\*: Insulated glazing unit integration for durability reasons; \*\*: ratio between energy within the whole solar spectrum and the one only in the visible region of 380-780 nm , based on AM1.5 solar spectrum (Favoino et al., 2015))



 Quantitative analysis ... costs VS potential % impact in nZEB energy reduction or generation??!



Conventional "bulk" silicon crystalline technologies
 Thin Film inorganic technologies (a-Si, CdTe, CIGS)
 Advanced Thin Film technologies (organic, III-V, etc...)

### Part 2, nZEB: discussion



### Questions to participants:

- In your project, how do you evaluate your solutions impact in a nZEB vision?
- Which KPIs and at which scale?
- In your project, have you already evaluated that?

Part 2, challenges and threats: discussion



Questions to participants:

### Which are the biggest challenges and threads for your solutions to effectively contribute to the nZEB target?

# Thank you all for the participation!



