

STORY

Technology integration and interoperability

Sustainable places 2019, Cagliari, Sardegna Jernej Zupančič, Laboratory of Energy Policy University of Ljubljana, Slovenia,

http://lest.fe.uni-lj.si/

Introduction

Table of contents

- Project structure
- Demos
- Technollogies
- Setup of the demo

The STORY project

- Added value of storage
- Connection of several technologies and actors
- Impact on regulatory
 development
- Business model development
- New actors integration on electricity markets
- New ancillary services
- Analysis of mass rollout of storage technologies

3

3 layered control strategy approach

- Device
- Site level
- Cloud

The demonstration sites

Existing technologies and new assets

Case Studies

- Residential building scale (Belgium)
- Residential neighbourhood scale
- Storage in factory setting (Spain)
- Residential district (N. Ireland)
- Grid BESS (Slovenia)
- Multi energy grid, industrial area (Belgium)

25.07.2025907.2019

Case study 1 and 2

Neighbourhood

- Thermal, seasonal thermal and battery storage
- Working with PVT (cooled), EVs, heat pumps, fuel cells and smart home appliances
- Market oriented heat pump control
- Grid energy exchange minimization
- Advanced monitoring and control system needed to maintain operation:
 - Thermal sensors
 - Communication equipment
 - Control platfrom and server

25.07.2019 Smart plugs

Project STORY - H2020-LCE-2014-3

- Installation of measurement equipment: main power meters, thermal sensors, smart plugs
- Setting up the stable connection
- Quality of sent data must be at sufficient level
- External services: weather forecast, market prices
- Comfort of the Residents
- Cycling of the storage, proper technology selection
- Proper ,customer support' and fast trouble shooting

Factory Storage implementation

- Battery storage implementation to improve local RES
- Reduction of peak demand, lowering the operation costs
- Pre-implementation activities:
- Study of battery system dimensioning
- Definition of factory baseline consumption
- Testing of the system
- Legal constraints: no storage grid interaction allowed

25.07.2019

S T O R Y

CS3

- Legal constraints: restricted storage operation
- Delays in commissioning due to change of production location, lack of producer's personnel on the field
- Change of factory production: extension from peak demand reduction to additional load shifting
- Regulatory changes: registration of storage possible grid interaction enabled
- Demo becomes role model for regulatory development
- Stability of the system was impacted by the contactor's sensibility, causing shut down of the system
- Many factors and technologies apart from the energy storage system itself have an impact in the operation
 ^{25.07.} and reliability of these plants

Residential district

- Implementation of CAES in weak section of the grid zone
- Supporting local PV, Wind generation
- Reinforcement of the grid
- Provision of ancillary services, capacity allocation and load on demand services
- First out-of-the-lab, large scale implementation

Crucial steps

Case Study 4

- Design of LP and MP systems
- Site preparation and tenders for CAES equipment, development of service agreements to enable revenue streams
- Single tender response, no agreement reached, move to separate technical solution (lower cost, faster build time)
- Design of the system, modelling and simulations performed
- LP system operational
- MP system: components designed, build and 25.07. installed, certification ongoing

Medium scale storage unit in residential and industrial area

- Demonstration of robustness and flexibility of the BESS
- Location 1: residential village in Slovenia
 - Supporting local PV generation
 - Peak shaving, island operation, reserve provision
- Location 2: industrial DSO's headquarters
 - Operating with PV, CHP, Ice bank and Diesel aggregators
 - Reduction of the peak demand curve, ancillary services

CS5

- Design of the demo control strategies, algorithms
- Definition of BESS functionalities, alarms outputs/inputs, interaction with the PLC
- Waiting for the delivery/delays, problems with BESS in the manufacturing process
- BESS not delivered, switched to other supplier
- Redesign of the system, adaptation of the control strategies, revision of the time plans
- New delays with cell delivery: factory acceptance test of the equipment (inverters and communication)
- After cells were delivered, the whole system assembled: final FAT

25.07.2019

Important lessons learned

CS5

- BESS production process from design to final commissioning revealed the complexity of the system
- First of a kind installation in Slovenia attracted a lot of attention
 - Slovenian distribution companies,
 - Slovenian Energy regulatory Agency,
 - Slovenian TSO,
 - EG control board members and private companies
- Different demo sites aims and needs brought high technical challenges
- Modular structure is a must
- Technology providers could not foreseen all problems: high noises, PCU unit processing and communication abilities, harmonics pollution
- The batteries are not available to the extent that is generally assumed and marketed. This is a similar learning as in Navarra.
- The grid environment is different in each case, and the systems have to be designed separately for each case, although some advantage can be gained from the flexibility

25.07.2019

S T O R Y

Multi energy industrial site

- Thermal storage
- Enhancement of ORC operation
- ORC provides heat to the facility and produces electricity
- Site goals:
 - Efficiency enhancement and active control of ORC through the use of thermal storage
 - State of charge estimation of thermal energy storage with limited sensors
 - Potential optimization of the thermal grid through double use in intervals
 - Use of the local batteries to reduce congestion and peak demand on the private grid

CS6

- The system is stable and operational, however the full output was not achieved (850kW, although designed for 1600kW)
- Tests were carried out on varying supply temperature, flow rates and boiler parameters such as the primary and the secondary air fractions
- Lower thermal power has resulted in multiple start/stop sequences of the ORC combined with limited hours of operation. This has several times resulted in a broken shaft sealing.
- Boiler is in the mean time used for heating purposes, while ORC adaptations are investigated: high temperature circle did experience uncoordinated way of power flows
- A major issue in effectively implementing the valve control is the lack of a flow information. Only the total flow and the flow towards the ORC are measured. The flow over the bypass and towards the hightemperature circuit are not measured.

• Disrepancies in energy balance, still investigated

Summary

- Time plan
- Parallel activities
- Reserve options, mitigation measures
- Equipment compatibility
- Not off-the-shelf solution will bring unforeseen challenges

THANK YOU!

25.07.2019

19

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 646426

Project STORY - H2020-LCE-2014-3