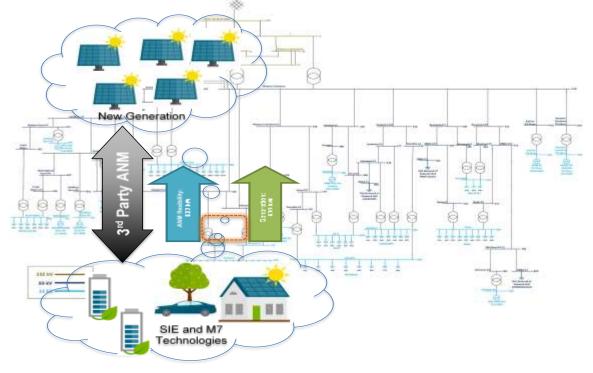


KPI Evaluation Framework and Tools Performance: A Case study of inteGRIDy project

Dr Chris Ogwumike, Dr Huda Dawood, Dr Tariq Ahmed, Mr Bjarnhedinn Gudlaugson, and Prof Nashwan Dawood



Overview for today:

Some background/motivation, then focus on Isle of Wight (IOW) pilot Use Cases,

KPI Evaluation, Results and Analysis

tees.ac.uk/computing

InteGRIDy

Integrated Smart GRID Cross-Functional Solutions for Optimized Synergetic Energy Distribution, Utilization Storage Technologies

□ 28 partners

- 33 Use cases
- □ 4 main thematic pillars
- □ 4 domains
- □ 10 pilot sites

□inteGRIDy aims to:

- integrate cutting-edge technologies, solutions and mechanisms in a scalable Cross-Functional Platform (framework of tools) of replicable solutions
- connect existing energy networks with diverse stakeholders with enhanced observability of both generation and consumption profiles

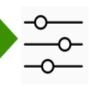
Uwhich will advance:

- the **optimal** and **dynamic** operation of the DG,
- fostering grid stability and coordinating Distributed Energy Resources (DERs), Virtual Power Plants (VPPs) and collaborative Storage schemes
- within a continuously increased share of RES

Isle of Wight Pilot Description of Action (DOA)

inteGRIDy pillar	Aspects Addressed	Technologies	Use cases
Demand Response	 Test smart technologies regarding heat pump remote control hub and building energy management to enable load shifting. Develop a Power Systems Model and use it to identify constraints to 'autonomous' generation. 	 VPP for Advanced Building Management System Control (using sensors and control) Heat Pump Control Hub. 	- Building optimization to maximize efficiency and demand flexibility
Energy Storage Technologies	- Test thermal storage solution to enable load shifting and cost reduction for domestic users.	 Heat Pump Control Hub. (using Data logger /controller) 	 Minus7 Energy storage system

NVESTORS


Gold

tees.ac.uk/computing

KPI evaluation phases

1. Define and analyse the evaluation parameters

Redefine goals, purposes and post conditions

2. Select the appropriate evaluation methodology

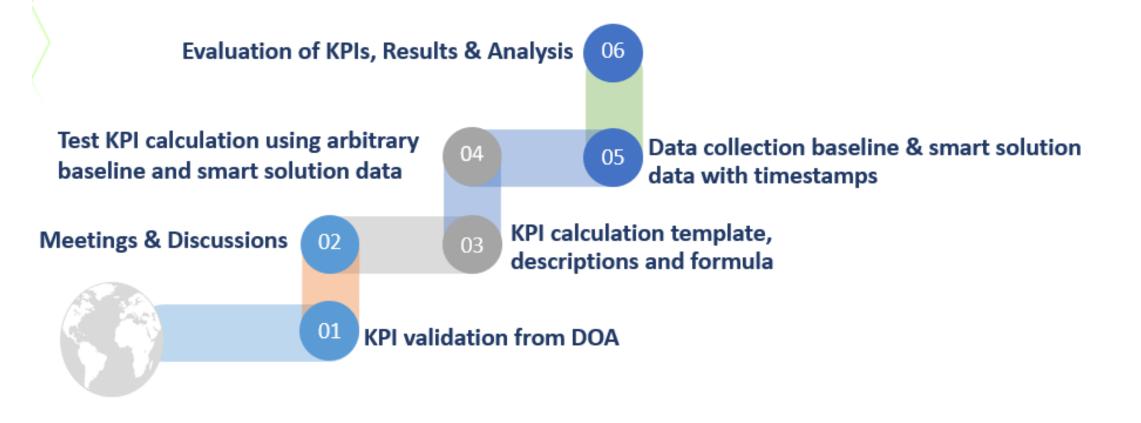
Combination of the available methodologies in the bibliography

3. Mechanisms for data collection as needed for the evaluation process

Technical and business (stakeholder / users oriented) mechanisms

4. Evaluation process based on the collected data

Evaluation process and analysis of the collected data



KPI evaluation methodology

tees.ac.uk/computing

Gold

Building optimisation Use case

- This use case aims to maximize the grid efficiency and demand flexibility contribution to DSO triggered demand response services
- Demand response event schedules were grouped into three; increase, decrease and hold consumption (1, -1, 0).

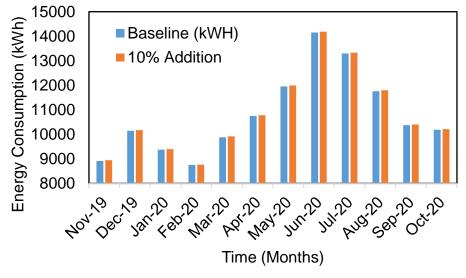
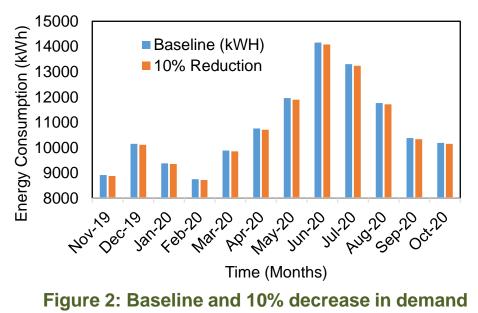



Figure 1: Baseline and 10% increase in demand

tees.ac.uk/computing

Table 1: Technical KPI Results for building optimisation use case

KPIs	#ID	Baseline	10% Increase	10% Decrease
Energy Consumption	T.01	130973	131322	130415
Peak to Average Ratio	T.02	140.48%	140.46%	140.31%
Energy Consumption Reduction	T.04		-349	558
Demand Flexibility Ratio	T.05		-0.00266	0.00426
Demand Flexibility Request	T.06		130626	130409
Demand Flexibility Baseline (Potential)	T.07		130626	130409
Demand Request Participation	T.08		0.00267	0.00428
Demand Request Enrolment	T.09		0	0
Peak Load Reduction	T.10		-35	77

Table 2: Economic KPI Results for building optimisation use case

KPIs	#ID	Baseline	10% Increase	10% Decrease
Retailer Cost of Energy	EC.01	17681	17728	17606
Average cost of Energy Consumption	EC.02	1360	1364	1354

Table 3: Environnemental KPI Results for building optimisation use case

KPIs	#ID	Baseline	10% Increase	10% Decrease
CO2 Emission	EN.01	17812	17860	17736
CO2 Emission Reduction (kg)	EN.02		-47.46	75.84

Teesside School of Computing, Engineering & Digital Technologies tees.ac.uk/computing M7 Energy Storage Use case

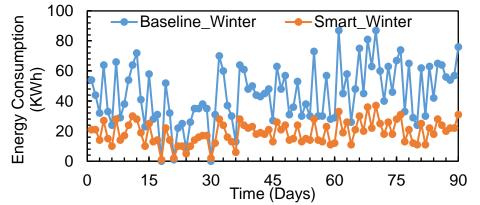


Figure 3: Baseline and Smart Energy Consumption for Winter (Dec to Feb)

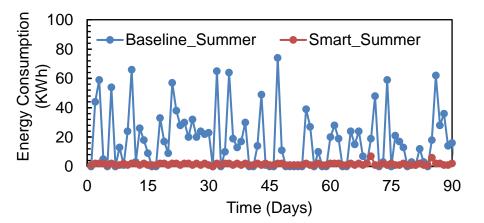


Figure 4: Baseline and Smart Energy Consumption for Summer (June to August)

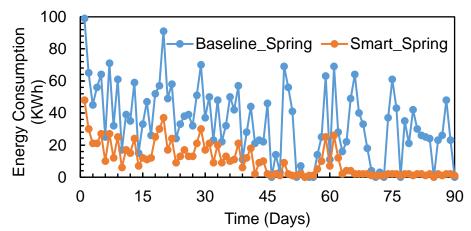
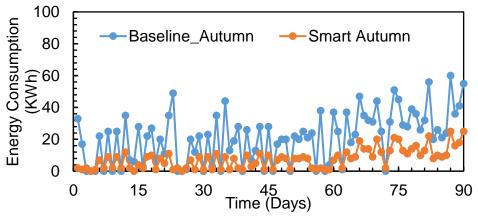



Figure 5: Baseline and Smart Energy Consumption for Spring (March to May)

🛂 🚾 disability

6 Confiden

Figure 6: Baseline and Smart Energy Consumption for Autumn (Sept to Nov.)

Excellence

Framework

lver

ORS

Gold

M7 Energy Storage cont.

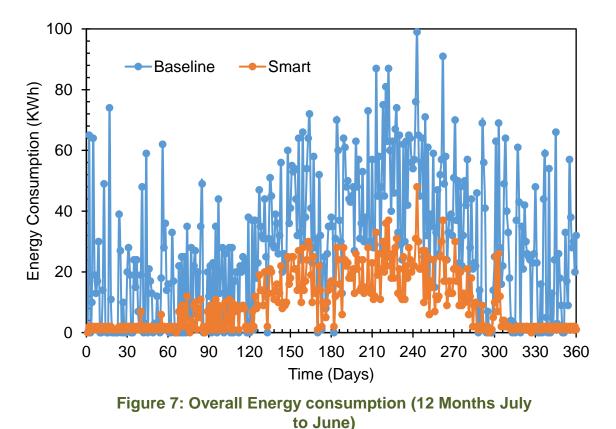


Table 4: Technical KPI Results for M7 Energy Storage Use case

KPIs	Unit	#ID	Baseline	Smart
Energy Consumption	kWh	T.01	691	48
Peak to Average Ratio	%	T.02	296	129
Energy Consumption Reduction	kWh	T.04	643	
Demand Flexibility Ratio		T.05	0.9305	35456
Peak Load Reduction	%	T.10	6	4

Table 5: Economic KPI Results for M7 Energy Storage Use case

KPIs	Unit	#ID	Baseline	Smart
Retailer Cost of Energy	£	EC.01	1443.69	468.04
Average cost of Energy				
Consumption	£/kWh	EC.02	3.97	1.29

Table 6: Environnemental KPI Results for M7 Energy Storage Use case

KPIs	Unit	#ID	Baseline	Smart
CO2 Emission	Kg	EN.01	1454.38	471.51
CO2 Emission Reduction	kg	EN.02	982.8	87

School of Computing, Engineering & Digital Technologies Teesside University Conclusive remarks on IOW

Pilot sites	Use cases	Demand Flexibility / Grid optimization	Energy Consumption Reduction / Cost optimisation / Retailer cost	Energy storage / EV / CO ₂ Emission reduction
IOW	UC01- Building optimisation to maximise efficiency and demand flexibility, minimise costs and reduce environmental impact across the enterprise.	Grid efficiency and demand flexibility contribution to DSO triggered demand response services was based on 10% increase / decrease in demand considering contractual framework limitations that could potentially apply. This is applicable to both requested and potential energy consumption in demand flexibility.	For 10% increase in demand, the energy consumption was increased by 349 kWh. For 10% decrease, the energy consumption was decreased by 558kWh. The aim of stabilizing grid efficiency has been achieved.	
	UCO3- M7 Energy Storage system	The system appears to meet the requirements of the Third Party ANM flexible connection offer but the ability to test and report on this flexibility is reduced as no DNO is working on this project with the IOW	Minus 7 energy storage system stores heat during periods of low electricity cost, which typically correlates to a lower grid carbon factor as well as cheaper electricity cost. Overall energy reduction of 643 kWh was achieved.	There is a significant reduction of 982.87 kg CO_2 emission due to smart implementation in this use case. The percentage reduction of approximately 68% was obtained for the CO_2 emission.

tees.ac.uk/computing

tees.ac.uk/computing

Questions!

