

Prefabricated plug&play façade unitized for deep retrofitting: the RenoZEB case study The RenoZEB case of study Sep. 28 - Oct. 1, 2021 | Rome, Italy

Laura Vandi <u>l.vandi@focchi.it</u> Project manager of Innovation Focchi Spa

This project has received funding from the European Union's H2020 Research and Innovation under grant agreement No 768718. The sole responsibility for the content lies with the authors. It does not necessarily reflect the opinion of the European Union.

Focchi façade System

OUTLINE

- RenoZEB introduction
- Boundary conditions
- Focchi façade system
- Tests and results
- Conclusions

RenoZEB Introduction

Project timeline 10/2017 03/2021 (09/2021)

Call H2020-EEB-2017

Call strategy

The European call regards the development of near zero energy building renovation. In this concept strategy for deep retrofitting or technologies for building efficiency are required

Partner

SOLINTEL, Project Coordinator Michele Vavallo

TECNALIA, FRAUNHOFER, B+H, UNIVPM, HYPETC, BALKANIKA, VORU, TREU, DURANGO, RINA, CYPE, SALFORD, CSTB, ENERGYPRO, ACE

Focchi is responsable for the plug and play facade

FOCCHI

RenoZEB Main Objective

The project aim is to establish a systematic methodology for the energy deep retrofitting for building stock market by developing a BIM based platform and tools for actors of the value

chain.

Four pillars of RenoZEb project

Reduction of energy consumption

Reduction of cost and risk

Replicability and adaptability

朤

Increase the property value

Boundary conditions

Building envelope analysis

Building's boundary conditions:

Existing load bearing structure

Existing openings

Identification of facade panels:

Primary panels (window unit)

Secondary panels (opaque, technical units)

Eventual aggregation of units

Figure 1: Phase 1 - existing building

Figure 2: Phase 2 - boundary conditions

Figure 3: Phase 3 – Identification of baseline

Figure 4: Phase 4a - primary modules designed

designed

Figure 5: Phase 4b - secondary modules Figure 6: Phase 4

Building envelope limitations

Concept of RenoZEB envelope system:

- Identification of limitations in building existing stock
- **Reference to RenoZEB demonstrator** buildings in Durango, Spain and in Voru, Estonia

Façade modules prefabrication catalogue

Concept of RenoZEB envelope system:

- Unitized façade system (P&P)
- Different units typologies (multifunctional façade)
- Different external finishing (architectural needs)

Focchi façade system

RenoZEB façade

Material	s [m]	Thermal properties		Vapour Resistivity	
		λ [W/mK]	R [m2K/W]	MN.s./g.m	
Steel	0.0012	50	0	500000	
Mineral fiber	0.217	0.035	6.2	8	
Membrane and acquapanel	0.012	0.35	0.036	60	

RenoZEB system design

- With glazing bead for the external finishing.

The available finishings are:

- Wood with joined breathable and water resistant membrane;
- Aquapanel with joined breathable and water resistant membrane.

CE certification for UNI EN ISO 13830:2005 curtain wall façade

Material	s [m]	Thermal	Vapour Resistivity	
		λ [W/mK]	R [m2K/W]	MN.s./g.m
Perforated sheet (or similar)	0.0012	0	0	0
Mineral fiber	0.217	0.035	6.2	8
Air layer	0.040	-	0.18	5
Membrane and aquapanel	0.012	0.35	0.036	60

RenoZEB system design

- Without glazing bead for the external finishing

The available finishings are:

- Fiber Cement with joined breathable and water resistant membrane;
- Porcelain tile with joined breathable and water resistant membrane;
- Glass with joined breathable and water resistant membrane;
- Wood with joined breathable and water resistant membrane.

CE certification for UNI EN ISO 13830:2005 curtain wall façade

Material	s [m]	Thermal	Vapour Resistivity	
		λ [W/mK]	R [m2K/W]	MN.s./g.m
Perforated sheet (or similar)	0.0012	0	0	0
Mineral fiber	0.217	0.035	6.2	8
Air layer	0.040	-	0.18	5
Membrane and aquapanel	0.012	0.35	0.036	60

RenoZEB system design – Solution 2.0 – Durango Demo case

NO CONDENSATION.

The RenoZEB prefabricated panel solution 2.0 is validated and verified for Durango.

RenoZEB system design – Solution 2.0 – Voru Demo case

NO CONDENSATION.

The RenoZEB prefabricated panel solution 2.0 is validated and verified for Voru.

28th-1st October 2021

RenoZEB system design

Design and development of RenoZEB envelope system

System design of RenoZEB envelope system:

OPAQUE UNIT (max 1200 x 3000 mm)

BASE COMPONENTS:

- Unitized system prefabricated off-site
- Installation on-site on brackets fixed to the slab edge
- Aluminium structure
- External finishing in fibre cement painted
- Mechanical restraint to guarantee the possibility to replace finishing with other materials or technical elements

VALIDATION

- **DURANGO** U_{CW} = 0,14 W/m²K < 0,28 W/M2k

- VORU

U_{CW} = 0,127 W/m2K < 0,13 W/m2K

System design of RenoZEB envelope system: **OPAQUE UNIT** (max 1200 x 3000 mm)

- Finishings choice
 - Cement Board
 - Wood (slat or panel)
 - Fibercement
 - Porcelain tile

System design of RenoZEB envelope system:

WINDOW UNIT (max 2200 x 3000 mm)

- Each type of window (materials, openings typology), with/without roller shutter integrated
- Eventual ventilation integrated in window monoblock

VALIDATION

- **DURANGO** U_{CW} = 0,66 W/m²K < 1 W/m²K
- **VORU** U_{CW} = 0,47 W/m²K < 0,63 W/m²K

System design of RenoZEB envelope system:

SOLAR THERMAL COLLECTOR UNIT

- Water thermal solar collector with water to be used also for DHW to have higher water temperature

VALIDATION

- **DURANGO** U_{CW} = 0,139 W/m²K < 0.28 W/m²K
- **VORU** U_{CW} = 0,126 W/m2K < 0,13 W/m2K

Laura Vandi – FOCCHI Sustainable place 2021 – Digital event

- H -

System design of RenoZEB envelope system:

PV Unit

- PV integrated in façade with cavity for ventilation to preserve panel efficiency and eventually to use heated air for ventilation

VALIDATION

- **DURANGO** U_{CW} = 0,149 W/m²K < 0.28 W/m²K
- **VORU** U_{CW} = 0,13 W/m2K < 0,13 W/m2K

Prototype manufacturing

Prototype manufacturing

Prototype manufacturing

Units prototype

<u>Opaque Unit</u>

Window Unit

25

RenoZEB façade – Final Design

Units prototype

<u>PV Unit</u>

Solar Collector Unit

Mock-Up installation

Mock-Up installation

Tests and results

Tests and simulations	Test conducted	Mock-Up
Thermal Behaviour (EN ISO 10077-2:2008)	EN ISO 10077-2:2019 T3.2	Design and Kubik
Heat bridges and condensation risks	EN ISO 10077-2:2019 T3.2	Design and Kubik
Acoustic improvement of existing envelope	UNI EN ISO 16283-3:2016/EC 1-2016/EC 2-2016 and UNI EN ISO 717-1:2013	Acoustic Mock- Up (AMU)
Water-tightness of joints (protection against driving rain (EN12865:2002),	EN ISO 13830:2005 Curtain Wall façade – CE for façade	Performance Mock-Up (PMU)
Wind load resistance (ETAG 034 – ER4 – Safety in use)	EN ISO 13830:2005 Curtain Wall façade – CE for façade	Performance Mock-Up (PMU)
Reaction to fire (EN 13501-1) (Test under EN 13823, classification SBI)	EN 13501-1 – Indication about Reaction to fire classification	Fire Mock-Up (FMU)
Fire resistance (EN1364-3 and EN 1364-4)	Not applicable in ventilated façade	

28th-1st October 2021

Tests

Sep. 28 - Oct. 1, 2021 | Rome, Italy

AMU – Acoustic mock-up

Preparation phase

- To demonstrate RenoZEB façade acoustic insulation performance
- To conduct test under UNI EN ISO 16283-3:2016/EC 1-2016/EC 2-2016 and UNI EN ISO 717-1:2013 (IN-OUT test)
- No Flanking test due to existing envelope responsible for horizontal and vertical acoustic sound transmission

Design

- Acoustic Chamber in Focchi premises
- Test conducted by accredited entity
- One brick wall as existing building envelope

AMU – Acoustic mock-up

AMU results

- Report by accredited entity
- Results achieved (R'45°w (C, Ctr)):
 - Configuration 1: 46 (-1, -4) dB
 - Configuration 2: 45 (-2, -5) dB
 - Configuration 3: 57 (-1, -4) dB

Conclusions:

- **Conf.1 vs Conf.2:** benchmark of Configuration 1 with opening was difficult to be defined, therefore no opening was evaluated.
- **Conf.1 vs Conf.3:** Existing envelopes have massive element and achieve good initial result, but openings are critical points. Introduction of RenoZEB opaque panels can improve significantly the acoustic insulation
- 42dB si the target for Curtain Wall façade and RenoZEB façade achieves it

PMU – Performance mock-up

Preparation phase

- Test Chamber in accredited entity premises
- Test conducted by accredited entity
- **NO existing building envelope**. All the performance needs to be achieved by RenoZEB façade itself (*challenge*)

Design

- RenoZEB façade's units:
 - Window unit (n.1)
 - Opaque unit with porcelain tile (n.2)
 - Opaque unit with fibres cement (n.2)

PMU – Performance mock-up

PMU result

- Report by accredited entity
- Results achieved

Conclusions:

- Innovative ventilated façade tested with EN ISO 13830:2005
- Safety façade demonstrated with different materials (interchangeable)
- CE certification

Activity		Test reference	Classification reference	Class
air permeability through fixed parts	related to overall area	UNI EN 12 <mark>1</mark> 53	UNI EN 12152	A4
air permeability through openable parts	positive pressure	UNI EN 1026	UNI EN 12207	3
	negative pressure			4
watertightness		UNI EN 12155	UNI EN 12154	R6
resistance to wind load under design load +1550 Pa and -1550 Pa		UNI EN 12179	UNI EN 13116	pass
resistance of external wall systems to driving rain under pulsating air pressure		UNI EN 12865	UNI EN 12865	600 _A
resistance to wind load		ETAG 034	ETAG 034	±2400 Pa
external impact resistance on gres		ETAG 034	ETAG 034	category III
external impact resistance on fiber cement		ETAG 034	ETAG 034	category I
internal impact resistance		UNI EN 13049	UNI EN 13049	5
external impact resistance		UNI EN 13049	UNI EN 13049	3

FMU – Fire mock-up

FMU preparation phase

- Reaction to fire (EN 13501-1) (Test under EN 13823, classification SBI)
- One test for each side where air is present. 5 sides could be tested:
 - External side to RenoZEB façade [FMU01]
 - Ventilated cavity to internal of RenoZEB panel [FMU02]
 - Cavity between RenoZEB panel and existing wall to RenoZEB panel [FMU 03]
- 3 tests schould be carried out to have class of reaction to fire. Premilinary assessment (one test for each side) of RenoZEB façade will be done
- 3 tests will be conducted

÷.

1 9

Ć.

FMU – Fire mock-up

FMU test

FMU has been done in an **accredited test chamber** and the activities conducted by an independent third party.

The following figures show the FMU **during** different tests (FMU1 e FMU2)

FMU result

The performance achieved are:

- FMU 01 potential classification B-s1-d0
- FMU 02 potential classification C-s2-d0
- FMU 03 potential classification C-s1-d0

The following figures show the FMU after different tests (FMU1 e FMU2)

Real environment test

Kubik, Tecnalia (Derio, Spain)

- To validate installation procedure and generate video for training
- To validate energy performances

Conclusions

Conclusion

- P&P façade is a valuable technological solution for building envelope deep-retrofitting (ETICS+ventilation+windows+BIPV, etc)
- **Customization** based on products on market
- High **quality** due to off-site prefabrication
- Aesthetic and functional integration;
- Easy and **time-saving** installation on-site;
- Low intrusive system able to maintain users inside the building
- **Adaptable** to different climate conditions, building tolerances, energy needs
- Consistent with current building envelope standard for **Curtain Wall façade** solution

Any questions?

This project has received funding from the European Union's H2020 Research and Innovation under grant agreement No 768718. The sole responsibility for the content lies with the authors. It does not necessarily reflect the opinion of the European Union.

Project manager of Innovation