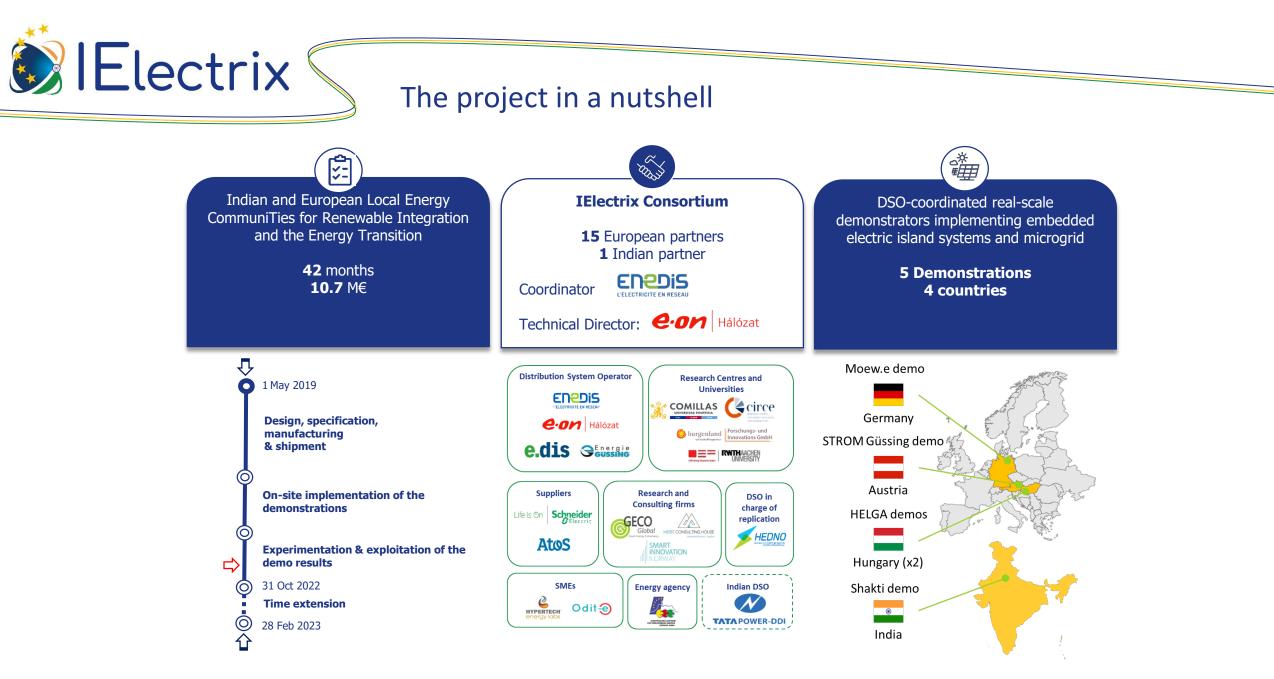
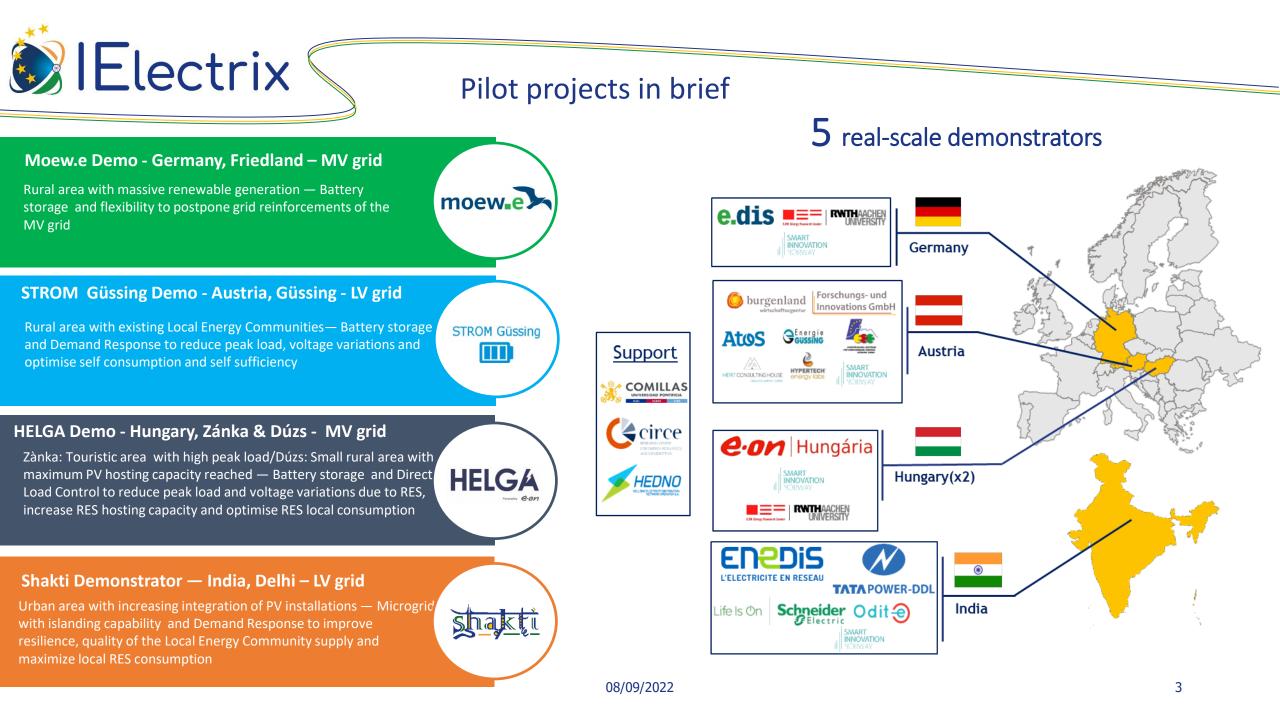


Energy Communities

Results and lessons learned from the IElectrix H2020 project

Gemira Martinez IElectrix PMO




Sven Tischer IElectrix Technical Director

08/09/2022

08/09/2022

Main experimentation results and lessons learnt from the demonstrations

German demo moew.e>

Congestion management:

- Battery storage helps to avoid RES curtailment and prevent grid overloads if a suitable optimized operating mode is used (2-4%)
- Capacity of the battery storage has a great influence on avoiding RES curtailment
- Large RES curtailments can only be avoided to a limited extent as the storage dimension is relatively small regarding the capacity.

Improving local energy management:

- Battery storage can improve the local energy balance and reduce the CO₂ emission (20%) by increasing self-consumption (13%) and selfsufficiency (20%) of the community.
- This effect can be enhanced by optimizing the operating mode

Network stability:

- In a grid with a very high penetration of RES and no locally connected rotating mass, Battery storage can provide a frequency support, through virtual inertia
- In a simulation environment Rate-of-change of frequency (RoCoF) can be reduced by up to 40 % through the contribution of virtual inertia

Lessons learnt

Technical integration of storage into the grid:

- Interface DSO / BESS invertor: Issues in the Grid Connection Agreement
 - Feed-in priority for renewable energies → unrestricted grid access is very difficult or even impossible
 - 2) The charging of the construction cost surcharge \rightarrow (DSO driven) for grid reinforcement

Contribution paid from grid customer to DSO for grid expansion

- DSO internally: Issues in the technical grid connection process
 - 1) BESS is still comparatively new and therefore not equally tested and known in the processes
- 2) Challenge of installation and connection of a control unit by using BESS for grid-serving purposes
- 3) Risk of regulatory cost recognition for DSO due to reserving its own capacity reduce the motivation for standardization

Austrian demo

Main objectives Demonstrate the effectiveness of prototype flexibility forecasting and scheduling capabilities for local BESS flexibility markets with a variety of assets including energy storage systems integration operation • **Improve the resilience** of the local energy system, thanks to the distributed reactive power control of the local energy system Demonstrate the effectiveness of a **human-centric** Demand **demand response** framework, enabling the Response transformation of passive energy consumers into active framework energy market participants necom **BESS** specification DR framework with 50 kW Inverter Prosumer integration Smart Home Equipment 100 kWh Battery capacity Inverter / Control unit Battery Racks Smart Lighting **HVAC** systems Installation 10/2021 **DHW** systems Load/Ambiente monitoring Integrated with 30 kWp PV

08/09/2022

BESS application

- Procurement, installation and commissioning of a BESS system including set up of communication between measurement equipment and Demo EMS and storage of measurement data enables:
 - □ Self consumption optimization (To avoid RES curtailment)
 - Peak shaving (To avoid demand peaks affecting the grid operation)
 - □ Voltage regulation by reactive power management

Demand Response application

- Installation and Commissioning of monitoring & control devices / Smart Home Equipment (HVAC, Domestic Hot Water, Total Load, PV generation, Ambient conditions,...) enables:
 - Continuous analysis of available flexibilities the participants can offer
 - □ Optimization of self consumption and self sufficiency
 - Provision of flexibility to the distribution grid (Load reduction/increase)

Lessons learnt

DR framework establishment:

- Continuous communication with participants is essential
- Benefit of participation has to be outlined properly
- Motivation of participants (electrical energy bill reduction, contribution to Energy Transition)
- Importance of easy and quick installation (Plug and Play solution) with less to no maintenance work necessary

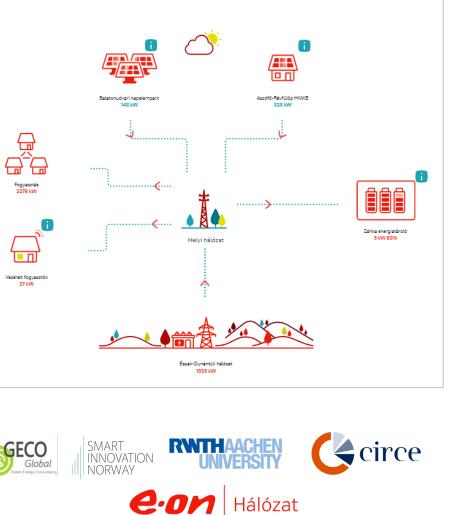
BESS integration:

- Detailed investigation of protective measures to be applied (depending on BESS capabilities and point of connection)
- Legal boundary conditions for implementing larger scale BESS (in public grids) and operating a BESS
- Proper definition of operation modes/conditions

Hungarian demos

DSO owned battery energy storage and DLC system for voltage management on MV line

Site A	Aszófő-Zánka MV line (EED)
Technical details of BESS	500 kW, 1233 kWh,
Advanced DLC 3 steps implementation	 New schedule (105 devices) New schedule with Smart Meters (55 devices) Smart Meter control (86 devices)


IElectrix

Site B	Dombóvár-Hőgyész MV line (EDE)
Technical details of BESS	250 kW, 573 kWh
Advanced DLC 3 steps implementation	 New schedule (63 devices) New schedule with Smart Meters (20 devices) Smart Meter control (22 devices)

IElectrix

Constraint reductions thanks to the demo system:

- In case of Zánka demonstration site the main objective was to reduce voltage drop, it was succesfully achieved - improvement by 0,8%.
- In case of Dúzs demonstration site the main objective was to reduce the PV's voltage increasing effect - it was reduced by 1%.

Improvement of network conditions thanks to the demo system:

- Grid voltage profile improvement in both demonstration sites.
- MV line load reduction in both demonstration sites.

Advanced direct load control system:

- The advanced direct load control system based on local conditions (before the demonstration it was optimized for regional aspects).
- New control method was developed using smart meters.

Lesson learnt

BESS integration:

- Lack of local expertise from supplier side can cause delay during the implementation phase.
- Long delivery times for non-European suppliers.
- Long development time of the control system (at least 6 months), and IT and electrical engineering expertise are required with close collaboration between the developer and the DSO.
- Connecting ICT systems poses a number of unforeseen challenges.

Advanced DLC system integration:


- It is difficult to provide a control that simultaneously satisfies network needs and does not disturb consumers.
- Seasonal update required in control tables.

An Urban LV Microgrid with islanding capability

IElectrix

software

- Detection of significant voltage excursions on the LV network thanks to the demo SCADA system
- Reduction of voltage excursions with a MV/LV transformer with On Load Tap Changer facility
- Improvement of the resilience of the local LV energy supply with the islanding mode of the urban Microgrid in case of unexpected MV power cuts or MV maintenance works
- Implication and participation of the customers into the demand response program. Half of the customers connected to the substation agreed to participate
- Improvement of human and equipment protection against electrical hazards at St Xavier School secondary substation with the implementation of a protection plan covering both on and off grid mode

Lessons learnt

Adaptability of a European system to the Indian environment:

- High level of costs to import equipment
- Delhi harsh and evolving environment depending on the time of year
 - Dusty and polluted : City with the worse air quality in the world
 - Hot (50°C) before the monsoon and humid during Monsoon
- Majors components of the demo system not available in India
 - Difficulty to repair / replace equipment in Delhi
 - Lack of local expertise

In conclusion

The use of a battery energy storage system

- Helps to avoid RES curtailment
- Can improve the local use of energy in a community
- Provides flexibility to the DSO
- Can reduce network losses & improve quality of energy supply
- Improves grid resilience

However the costs of implementation remain high and an assessment case by case is needed to evaluate the potential financial benefits in a given regulatory context.

Thank you for your attention

Consortium

Stay tuned with IElectrix

- Visit our website
 <u>www.ielectrix-h2020.eu</u>
- Follow us on Twitter
 Ielectrix_H2020
- Subscribe to the project Newsletter <u>here</u>

