SUSTAINABLE PLACES 2022

Università degli Studi di Ferrara

E

S

R

I R

A

Х

Building Performance Simulators software for industrial regeneration projects: presentation of the Ex-SIR case study Luca Morganti |

International instances of sustainability and circular economy

Industrial Archeology and Methodological recovery approach

The Ex-SIR case study

Application of the multiphysics simulation model

| International instances of sustainability and circular economy

Industrial Archeology and Methodological recovery approach

The Ex-SIR case study

Application of the multiphysics simulation model

The built environment is a solution to climate change

International instances of sustainability and circular economy

| Industrial Archeology and Methodological recovery approach

The Ex-SIR case study

Application of the multiphysics simulation model

PLACES 2022

International instances of sustainability and circular economy

Industrial Archeology and Methodological recovery approach

| The Ex-SIR case study

Application of the multiphysics simulation model

credit: ph A. Villani | Società Interconsorziale Romagnola (SIR)

Assonometria comparto urbano | Urban sector axonometry \bigwedge Parco Piazza Banchina E

Confine

Pianta piano terra | Ground floor plan *S

International instances of sustainability and circular economy

Industrial Archeology and Methodological recovery approach

The Ex-SIR case study

| Application of the multiphysics simulation model

| Daylight factor simulation

| Multiphysics simulation

COMSOL MULTIPHYSICS®

| Multiphysics simulation

The analysis was divided into three distinct phases:

1 | feasibility study,

in which the possibility to work with passive environmental systems has been verified, considering the shape of the pre-existence in its climatic context.

2 | numerical study,

in which the flow rates of moving air were quantified by comparing them with those necessary for the project

3 | thermodynamic study,

aimed at verifying the hypothesized advantages due to the multiplicity of casings.

Phase one simulation:

45° inclined section of the paraboloid passing over a wind chimney

| Min volumetric flow rate

Q (interno) =2,61E+00 m³/s Q (spazio intermedio) =2,61E+00 m³/s

Qtot (Ex-Sir) = 3,61E+00 m³/s

Q (per single bay) = 1,10E-01 m³/s

	In / Out	Velocity magnitude [m/s]	Flow rate per bay [m³/s]
N-E Windows sensor	Out	4,33E+01	5,41E+00
S-W Windows sensor	In	6,67E+01	8,34E+00
N-E Upper ribbon window sensor	Out	6,90E+01	8,62E+00
S-W Upper ribbon window sensor	In	6,61E+01	8,27E+00
Wind tower sensor	Out	2,22E+01	2,69E+00
	Total input per bay [m³/s] =		1,66E+01
		-1,20E-01	
	Relative er	0,72%	

Phase two simulation:

Orthogonal section of the paraboloid passing over a wind chimney and passing through the raised volume. Summary of the results obtained from the measurements of the incoming (In) and outgoing (Out) air flows.

	In / Out	Velocity magnitude [m/s]	Flow rate per bay [m³/s]
N-E Windows sensor	In	4,16E-02	5,20E-03
S-W Windows sensor	In	5,83E-02	7,28E-03
N-E Upper ribbon window sensor	In	2,46E-02	3,07E-03
S-W Upper ribbon window sensor	In	2,40E-02	3,00E-03
Wind tower sensor	Out	1,19E+00	1,45E-01
	Total input per bay [m³/s] =		1,45E-01

Phase two simulation:

Orthogonal section of the paraboloid passing over a wind chimney and ground floor plan. Summary of the results obtained in still wind conditions.

	In / Out	Flow rate per bay [m ³ /s]	
N-E Windows sensor	Out	1,00E-01	
S-W Windows sensor	/	/	
N-E Upper ribbon window sensor	/	/	
S-W Upper ribbon window sensor	In	1,21E-01	
	Total input per bay [m³/s] =		1.21E-01
	T med [°C]	T Max [°C]	T min [°C]
Winter temperature sensor (Text = 5°C)	6,9	11,4	5,0
Summer temperature sensor (Text = 35°C)	33,3	35,0	27,9

Phase three simulation:

Summer and winter thermodynamic analysis. Summary of the results obtained.

International instances of sustainability and circular economy

Industrial Archeology and Methodological recovery approach

The Ex-SIR case study

Application of the multiphysics simulation model

credit: LETI, reworked by L. Morganti

Thanks for your attention

Q&A

