

Development and Validation of an Innovative Solar Compact Selective-Water-Sorbent-Based Heating System

 Renewable Heating and Cooling Solutions for Buildings and Industry Workshop,
 Sustainable Places 2020—

Digital event, 29 October 2020

- Claudia Fabiani
- University of Perugia (UniPG) -

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 764025.

OVERALL CONCEPT

- The SWS-HEATING project aims to develop an innovative Seasonal Thermal Energy Storage (STES) unit
 - with a novel sorbent storage material embedded in a compact multi-modular sorption STES unit,

 including advanced components and smart control for solar active houses.

Allow to store and shift the harvested solar energy during summer to the winter period

covering a large fraction of heating and DHW demand in buildings

CORE OBJECTIVES

- To develop a new sorbent material in the SWS family with optimised sorption properties,
 - matching the working conditions of a heat storage cycle with low temperature solar heat charging (70 °C – 95 °C);
 - allowing efficient application also in Northern Europe countries.
- To develop a compact multi-modular SWS-STES configuration with high corrosion resistance, high durability, ease of installation & maintenance, and low total cost.

AMBITIONS

- Suitability for installation in <u>new or refurbished</u> <u>single-family houses</u> as a compact solution.
- Optimised system design and sizing for achieving very <u>high</u> solar fraction of at least 60% in Southern, Central and Northern Europe.
- Potential to <u>reduce system</u>
 <u>cost up to 20-30%</u> compared to other solar units.
- Validation of the system (TRL5)
 and preparation of its further
 development.

LEVEL of ANALYSIS

L1 - <u>System</u>

Whole SWS Heating system.

L2 - <u>Sub-System</u>

Set of connected components that operate together with the same purpose and method.

L3 - Component

Single part whose purpose is meaningless without the interaction with other components.

L4 - Material

Exclusively involves the substances, mixture of substances or reaction pairs.

Technical, Socio-Economic and Environmental KPIs

- 1. SOLAR FRACTION
- 2. PRIMARY ENERGY CONSUMPTION
- 3. CO₂ EMISSION SAVINGS
- 4. GHG EMISSION SAVINGS
- 5. TOTAL SOLAR EFFICIENCY
- 6. STES EFFICIENCY
- 7. STES POWER DENSITY
- 8. THERMAL ENERGY STORAGE DENSITY
- 9. PRODUCTION COST

L1

L2

L3

L2

L4

L3

User satisfaction, dissemination and exploitation KPIs

1. USER'S ACCEPTANCE

L1

- 2. NUMBER OF VISITS AND

 DOWNLOADS FROM THE WEBSITE OR

 OTHER SOCIAL MEDIA
- 3. NUMBER OF PUBLICATIONS AND CITATIONS IN THE ACADEMIC LITERATURE

CONSORTIUM TEAM

Suggested topic for discussion

1

Combination of different technologies and storage components with dedicated control systems.

2

Evaluation of new techonologies and systems by means of a **comprehensive multi-objective approach.**

3

Definition of a **shared list of key performance indicators** to compare different systems.

More information at:

www.swsheating.eu

@SWSheating