

TIGON will demonstrate a comprehensive and market-ready solution for DC-hybrid grids for replication across Europe

Hybrid microgrid innovations for greener, more resilient and secure power networks

Alessandra Cuneo R&D Project Manager

RINA Consulting S.p.A.

5 OUTLINE

- 1. TIGON the fast facts
- 2. Background and existing challenge
- 3. The TIGON solution
- 4. Demo cases and use cases
- 5. Residential use case: Naantali district Finland
- 6. Interventions at Naantali
- 7. Key exploitable results
- 8. Impacts

3 The Consortium

	Research Centres and Universities	Small-Medium Entreprises	Large Companies
Technology validators			
Technology developers	(TECHNOLOGY) CARTIF	UBITECH digitizing energy	O efacec
Manufacturers			Empowering the future Innovacing in Magnetics
End users and validators			•метрополитен" еад
Dissemination, communication, replication	ICONS	energy labs	

3

TIG ON

TIGON at a glance

https://tigon-project.eu/

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 957769.

IGON – Fast Facts

- <u>Topic</u>: LC-SC3-ES-10-2020
 DC AC/DC hybrid grid for a modular, resilient and high RES share grid development
- **Type of action**: Innovation Action
- <u>Total Costs</u>: 7'996'115€
- <u>Max. Grant Amount</u>: 6'957'197€
- **Duration**: 48 months (Sept 2020 Aug 2024)
- Coordinator: CIRCE
- Number of partners: 15 + 1LTP

CERTH

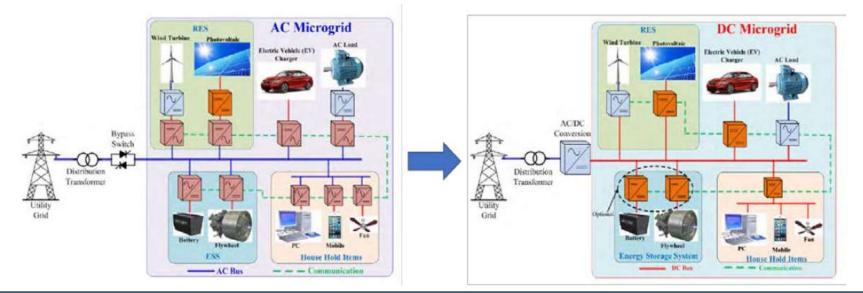
TECHNOLOGY CENTRE] CARTIF

CENTRE FOR RESEARCH & TECHNOLOGY HELLAS

efacec

moowering the future

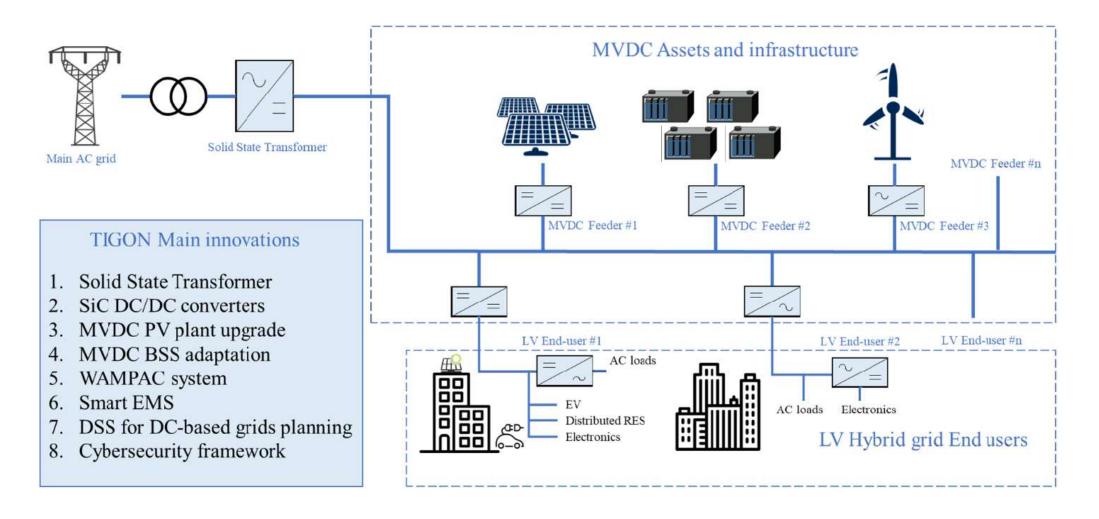
digitizing en



Background and existing challenge

Moving from AC towards hybrid DC power grid scenarios

Challenges Enable an efficient interconnection between microgrids


Increase grid resilience and reliability with new protection schemes

Provide efficient control, management and protection of the grid

Ensure the power grid quality of hybrid-grid schemes

Take the pioneering technologies to the market

8 The TIGON solution

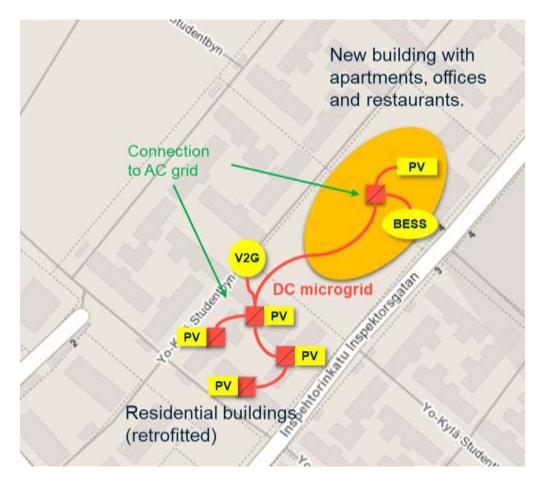
7

IGON demo-sites and use-cases

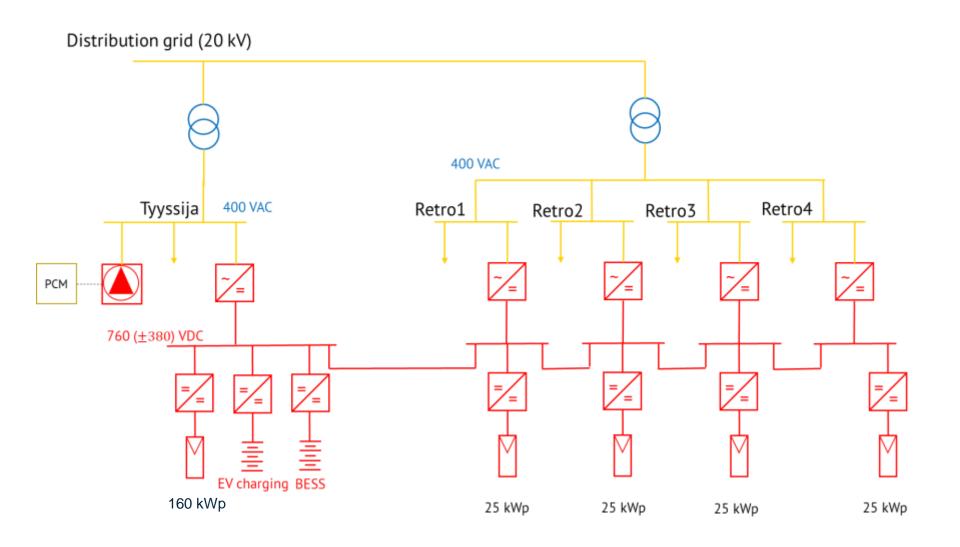
Use-case Turku region (Finland)

Demo-site CIEMAT (Spain)

Use-case Sofia (Bulgaria)


10 Use Case: Turku region, student village (Finland)

Areal view of the piloting district



11 Use Case: Turku region, student village (Finland)

Turku region, student village (Finland)		
Specific location	City of Turku	
Type of network	LV DC microgrid	
Deployment and set-up	03.2022 - 09.2022	
Operation, evaluation and impact assessment	09.2023 - 08.2024	
Keywords	#Energy Management System, #Bifacial Solar PV & BES Storage	
Main study	Optimized RES-Produced Management + Improve Smart DC microgrid efficiency	
Result	Integrate Photovoltaic Power Plant and Energy Storage System	

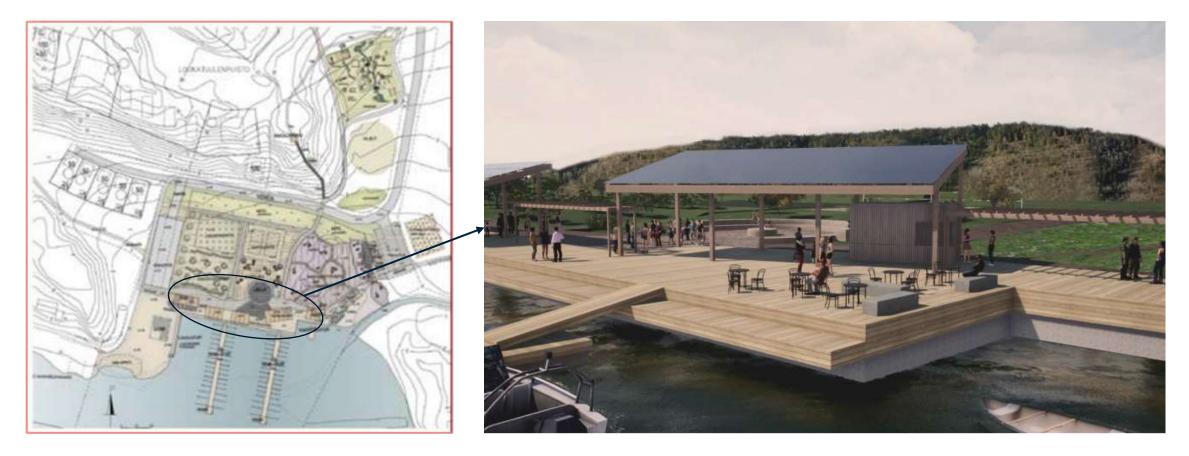
12 Student village microgrid schematics

11

¹³ Use Case: Turku region, Naantali residential district (Finland)

Areal view of the piloting residential district

14 Use Case: Turku region, Naantali residential district (Finland)


Turku region, Naantali residential district (Finland)			
Specific location	Luonnonmaa Res.Dist.		
Type of network	LV DC Residential Microgrid		
Deployment and set-up	03.2021 - 08.2022		
Operation, evaluation and impact assessment	09.2023 - 08.2024		
Keywords	#Energy Management System, #Solar&Storage		
Main study	Optimized RES-Produced Management + Improve Smart DC microgrid efficiency		
Result	Integrate Photovoltaic Power Plant and Energy Storage System		

15 Naantali residential district, solar canopies

Local DSO is operating Solar Canopies and offering RES electricity to Residential district.

¹⁶ Interventions at Turku region cases

- 1. Hybrid network model to be completed with e-vehicle charging capabilities, PV energy production and storage
- 2. Adaptation of the TIGON energy management system (EMS), decision support system (DSS) and cybersecurity system
- 3. Development of **new business models for LVAC and LVDC microgrids** for residential applications

17 Key Exploitable Results

FIGON KERs expected to be generated are:	Туре	Group
 KER1: Solid State Transformer (SST) – Market: 2026 Between other applications, SSTs enable the interconnection of MV AC and DC grids. 	Technology Hardware	Hardware
KER 2: SiC DC/DC converters – Market: 2026 •SiC WBG DC/DC converters topologies to improve efficiency in the interconnection of DC grids.	Technology Hardware	
KER 3: DC protection schemes – Market: 2026 •Overall DC protection scheme covering both MV and LV sides of the hybrid grid.	Advancement in technical knowledge/new DC protection model	development
KER 3: MVDC PV Plant – Market: 2024 •Solar power plants for production at MVDC directly.	Model for upgrading solar plants	nent
 KER 5: WAMPAC system – Market: 2027 Monitoring and Protection system whose main purpose is to control the stability and safe operation of the whole system. 	Technology: Hardware and software	S
 KER 6: Energy Management System (EMS) – Market: 2024 Operation modes and strategies integrated into a control software able to manage hybrid grids. 	Software/Strategy services	Software
 KER 7: DSS tool for DC-based grids – Market: 2027 Software tool that will provide with guidelines and simulations facilitating the planning of grid expansions or the development of new hybrid-grids 	Software/Strategy services	solutions
KER 8: Cybersecurity Defence System – Market: 2027 •Cybersecurity defence framework that will enable the protection of digitalised DC-based hybrid grids	Framework/model/services	õ

18 Expected impacts of TIGON as a whole

• Easier planning and targeted investments in the sector

DSS will be able to provide with guidelines facilitating the planning of grid expansions or the development of new DC-based hybrid grids across the EU.

• Electricity grid more resilient to faults and cyberattacks

- To achieve immune and resilient by design DC-based hybrid grids configurations including robust management and control techniques (WAMPAC and smart EMS) as well as innovative power electronics (SST and SiC DC/DC converters) that allow maximizing the integration of RES.
- > TIGON will develop a cybersecurity defence system.

• Greater share of renewables into the power network

- DC-based hybrid architectures are able to accommodate higher rates of RES in a more flexible and controllable way.
- SST will allow enhance the stability and power flow control of the whole system while providing ancillary services to the main grid.

• More efficient electricity system

- New configurations of DC-DC converters based on SiC technology and resonant circuits are expected to achieve energy efficiencies over 98%.
- Thanks to developed BSSs and EMS, TIGON is expected to increase in at least an additional 25% the original energy efficiency of the systems.

www.tigon-project.eu

Speaker: Alessandra Cuneo

alessandra.cuneo@rina.org

Project Coordinator: Breogan Sanchez

bmsanchez@fcirce.es

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 957769.