

ELECTRICITY DEMAND PROFILE OF HEATING AND COOLING APPLIANCES IN AUSTRALIAN LOW ENERGY RESIDENTIAL BUILDINGS

Prepared by: SEUNG HO LEE (JOHN)

Principal supervisor : Professor Wasim Saman Associated supervisor : Dr. David Whaley

The energy consumption by residential building accounts for large portion of total energy consumed in national-wide.

Nation

USA

Canada

Mexico

Norway

Sweden

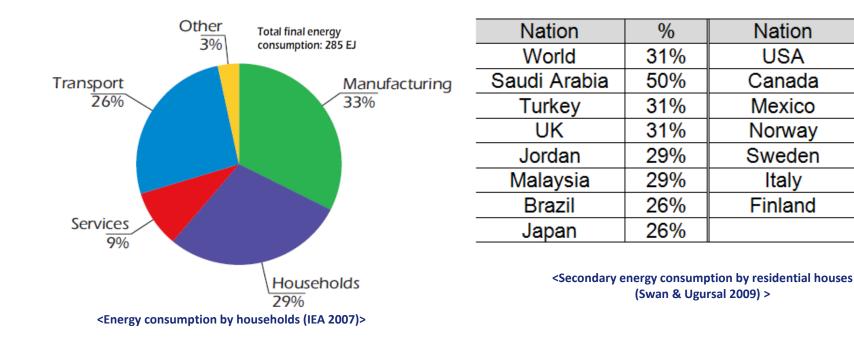
Italv

Finland

%

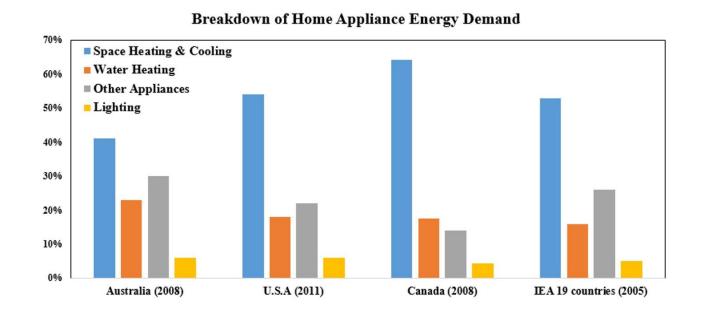
25%

24%


23%

21%

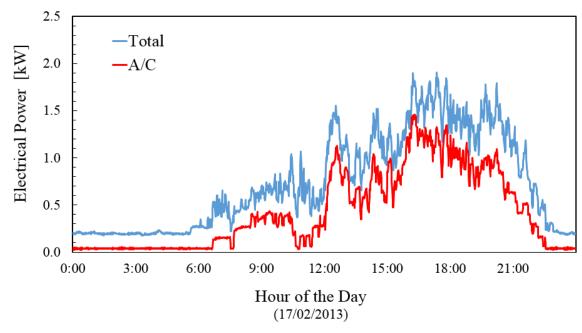
19%


17%

16%

UniSA Energy use by residential buildings (Contribution on Total Energy Demand)

More than 40% of energy used for indoor heating and cooling in conventional buildings.



<Breakdown of Home Appliance Energy Demand (ABS 2011; Behidj et al. 2008; IEA 2008; USDE 2012)>

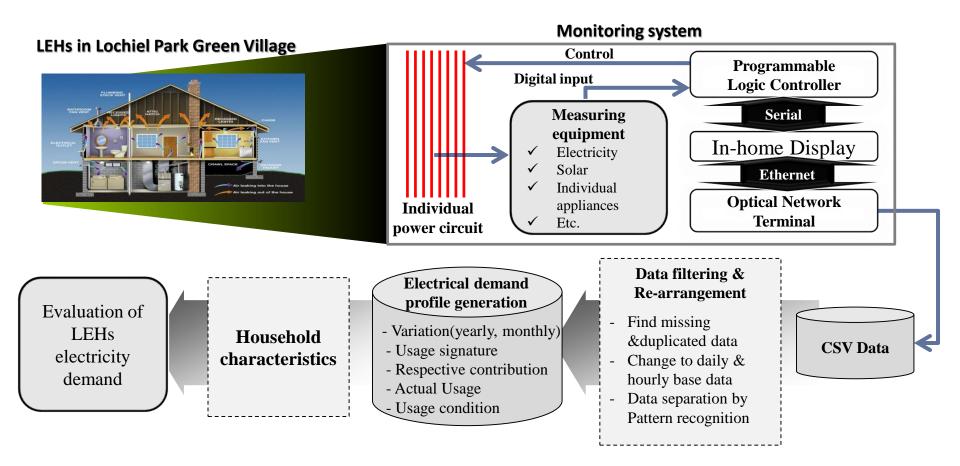
Energy use by residential buildings (Contribution on Peak Demand)

Considerable energy contribution of heating and cooling appliances on peak demand.

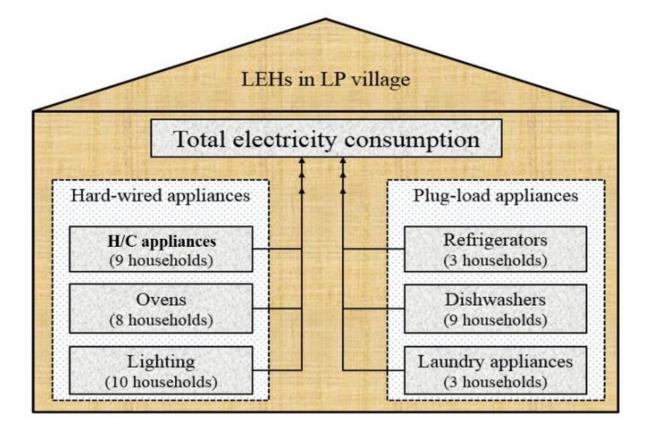
<The impact of space cooling on peak demand in low energy house of Australia>

Aims of the study

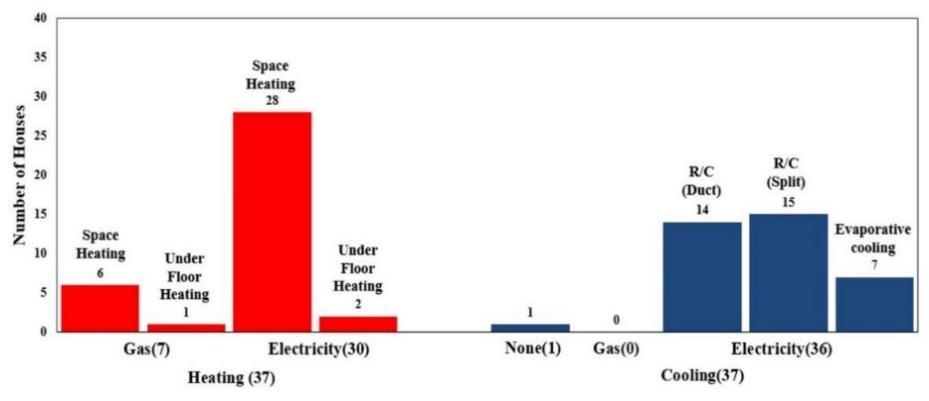
- Electricity usage profile of H/C appliances in various time frames
- ➤ The contribution of H/C appliances
 - \checkmark on the total electricity consumption
 - \checkmark peak demand of low energy Australian dwellings
- > Analysis installed H/C appliances from appliance audits


About Lochiel Park Green Village

- Monitoring 106 low-energy dwellings (83 houses and 23 apartments)
- Following strict urban design guidelines and development targets
 - ✓ Passive design of homes with minimum 58MJ/m²
 - ✓ 66% energy demand
 - ✓ 74 % greenhouse gas emission reductions
- Technologies
 - ✓ PV system (min.1.0 kW_p per 100 m²)
 - \checkmark Solar water heating
 - ✓ High level of insulation and double glazed windows
 - ✓ High performance heating and cooling system (≤ 4kVA)
 - Daylighting, skylights and energy efficient lights
 - Smart metering and In-home monitoring system (EcoVision)



Monitoring system and data processing



- \checkmark Majority of the houses prefer electricity over gas for heating.
- ✓ Most other houses use ducted/split RCAC for both heating and cooling; one house has gas space heating with no cooling device.
- ✓ Evaporative cooling A/Cs, which are suitable for the dry climate region, are installed in seven houses

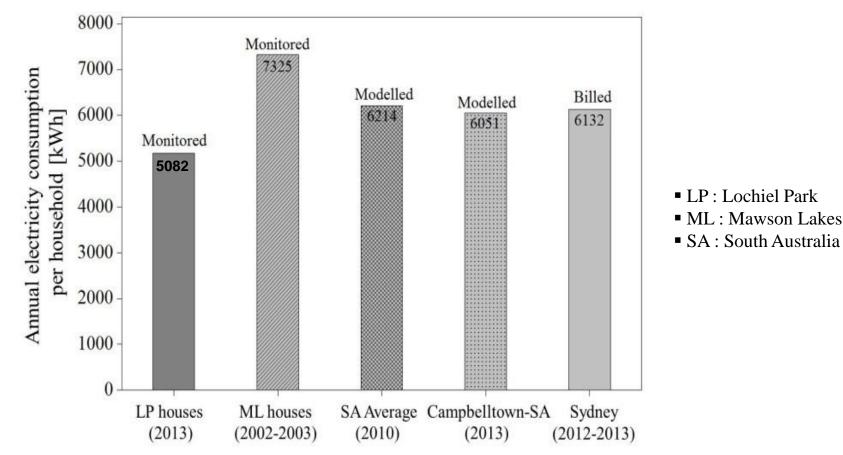
Detail monitored houses

House ID	Α	В	С	D	Ε	F	G	Η	Ι	J	Κ	L	Μ	Ν	0	Р	Q
L02OZ	2	0	2	0	0	0	3	2	3	238.3	7.5	D	-	-	R/C	R/C	Ducted
L62OF	1	1	0	0	0	0	-	-	-	173.1	-	D	12	12	R/C	R/C	Ducted
L03TS	2	0	2	0	0	0	3	2	3	178.4	7.5	Т	9.8	10.6	R/C	R/C	Ducted
L01TS	2	0	2	0	0	0	3	2	3	173.8	7.6	Т	8	9.4	R/C	U/F	Split
L04FO	2	0	2	0	0	0	3	2	3	194.5	7.5	Т	12	13	R/C	R/C	Ducted*
L06FS	2	0	2	0	0	0	3	2	3	174.2	7.7	Т	8	9	R/C	R/C	Split
L26ST	4	0	2	0	1	1	3	2	3	208.6	7.6	D	6	7	R/C	R/C	Split*
L22SS	2	0	2	0	0	0	4	2	2	240.8	7.5	Т	14	11	EV	U/F	Ducted
L23SS	4	0	4	0	0	0	3	2	3	219.3	7.5	D	17	18	R/C	R/C	Split
A: Total number of residents J: Habitable floor area (m ²)																	
B: Number of seniors (age over 65) K: House energy rating (Accurate rating)																	
C: Number of adults (age 18~64) L: Dwelling type: Detached(D) / Terrace(T)																	
D: Number of young adults (high school) M: Rated cooling capacity (kW)																	
E: Number of children (primary school)							N: Rated heating capacity (kW)										
F: Number of toddlers (preschool)						(O: Cooling Type: Reverse cycle (R/C) / Evaporative cooling (EV)										
G: Number of bedrooms]	P: Heating Type: Reverse cycle (R/C) / Underfloor heating (U/F)										
H: Number of bathrooms						(Q: Split / Ducted										
I: Number of toilets -:							-: Information not provided										
*: two outdoor compressors																	

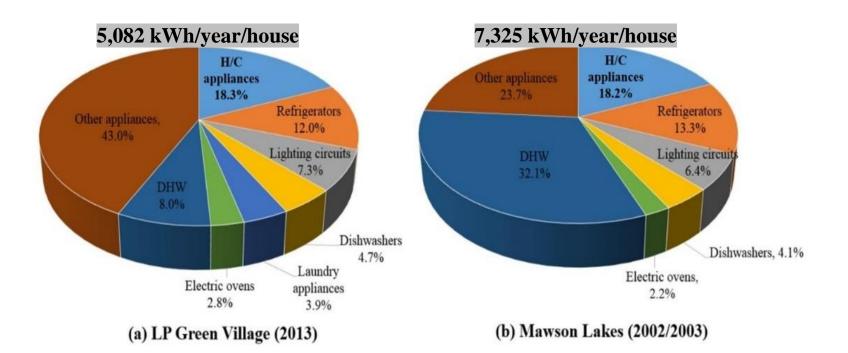
Table 1. Survey results: Household Information of Lochiel Park Green Village

Annual Consumption of H/C appliances

House ID	Electricity Co (kWh)	nsumption	Number of	f	Peak Time o (O'clock)	of demand	Contribution of H/C Appliance (%)			
	Total	H/C Appliance	Days H/C	Residents	``´´	H/C	Energy	Peak		
			used	_		Appliance	Consumed			
L02OZ	2612.2	230.9	12	2	16~17	17~18	8.8	12.5		
L62OF	4321.3	1143.0	110	1	17~18	17~18	26.4	42.3		
L03TS	5217.0	1036.3	122	2	17~18	21~22	19.9	24.3		
L01TS1	4144.3	542.0	34	2	17~18	17~18	13.1	11.6		
L04FO	6190.0	993.5	71	2	20~21	20~21	16.0	17.4		
L06FS	3104.8	582.9	54	2	20~21	20~21	18.8	23.6		
L26ST	8131.6	1466.1	189	4	18~19	18~19	18.0	22.9		
L22SS2	5755.0	978.8	58	2	18~19	18~19	17.0	21.1		
L23SS	6264.8	1677.6	170	4	17~18	19~20	26.8	30.5		
Average	5082.3	961.2	91	2.3	19~20	17~18	18.3	22.9		
1) Gas under floor heating hence the BCAC is only used for cooling										

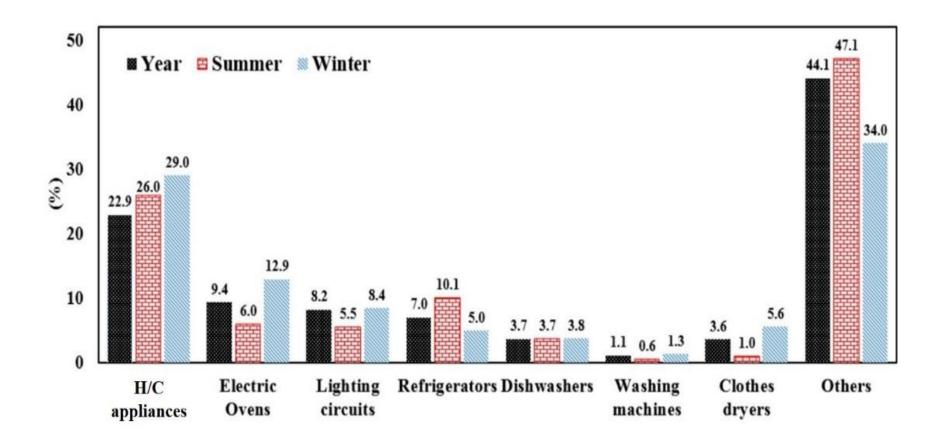

1) Gas under floor heating, hence the RCAC is only used for cooling

2) Heat pump for under floor heating / Evaporative cooling

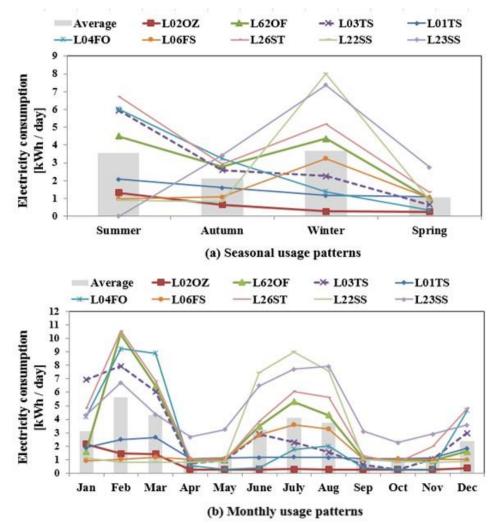

Annual electrical demand by low energy houses

- Considerable reduction of electrical demand by low energy houses*
 - (* Average 2.3 residents and $205m^2$ of habitable floor area
 - \checkmark 71~86 % of other housing clusters
 - \checkmark Due to advanced house design and technologies (less for H/C, but more plug loads)

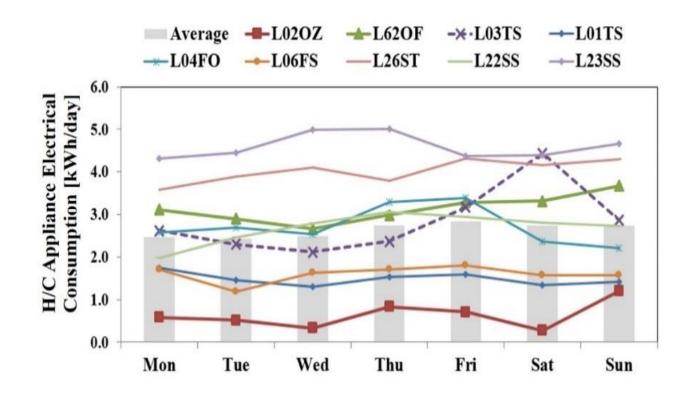
Contribution on total electricity consumption



NatHERS star rating: 7.5 stars
 (58 MJ/m² thermal comfort requirements)
 Average No. of residents: 2.3
 Average habitable floor area:205 m²

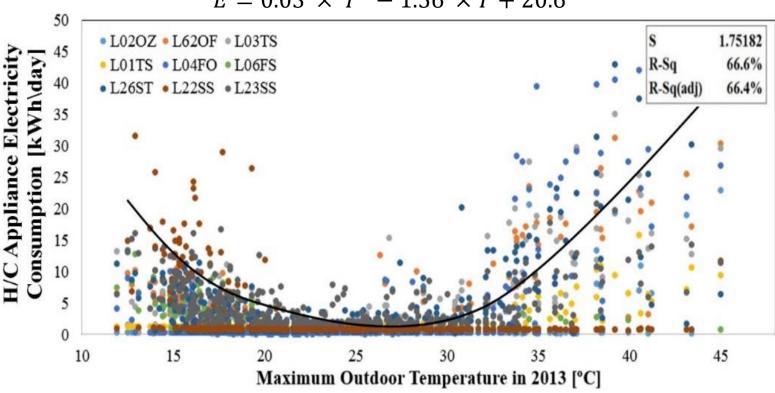

NatHERS star rating: 4.1 stars
 (160 MJ/m² thermal comfort requirements)
 Average No. of residents: 3

3. Average habitable floor area: 155.7 m^2


UniSA

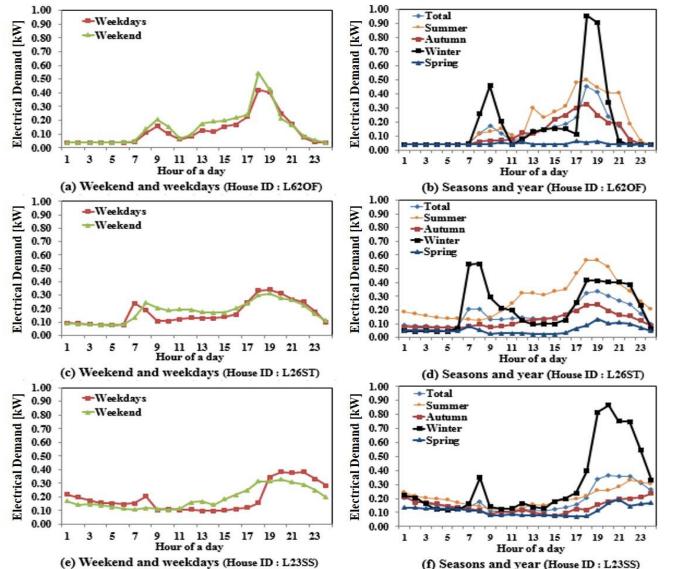
On average, the H/C appliances consume about 3.7 kWh/day in both summer and winter, whilst they consume 2.1 and 1.0 kWh/day in autumn and spring.

L01TS: RCAC for cooling & gas-fired under floor heating.


The H/C appliances consume slightly more electricity during the weekends (2.7 kWh/day) compared with weekdays (2.6 kWh/day)

H/C appliances are frequently used in low energy houses when the maximum outdoor air temperature is below 20°C or above 30°C.

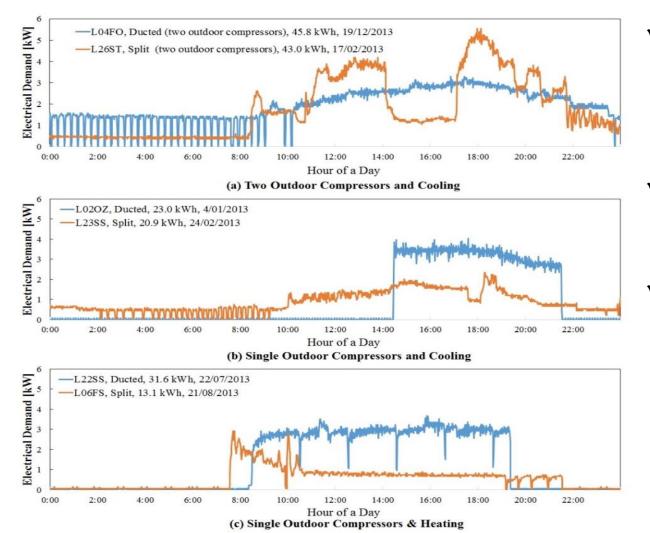
The electricity consumption of H/C appliances is closely linked to outdoor air temperature



 $E = 0.03 \times T^2 - 1.56 \times T + 20.6$

Figure 5. H/C appliances' daily electricity consumption vs. maximum outdoor air temperature

UniSA


Higher hourly electrical demand in winter higher peak electrical demand in winter

Winter: two peaks
(morning, evening)
→ high outdoor air temperature and sun radiation, no residents

Summer: increasing trends around 11am until 7pm → gradual increase of outdoor air temperature

Unisa Barbara Unisa Signatures Usage

Signatures of H/C appliances on the one day of the year when each H/C appliance consumes electricity the most

- ✓ 7 out of 9 have the maximum electrical demand of H/C appliance in summer for cooling when the outdoor air temperature exceeds 38°C
- ✓ Two houses have the maximum electrical demand in winter
- ✓ Ducted system shows continuous use of electricity during its operating period while split system shows more fluctuation depending on the use of individual indoor unit

- Considerable reduction in household energy consumption can be achieved in low energy residential buildings, which is attributed to the decrease of energy consumed by H/C appliances, due to high standards of thermal comfort and the requirement of highly energy efficient air conditioning systems.
- Despite the reduction in H/C energy usage, the outdoor air temperature is still the most influential parameter and their electricity consumption is predictable based on maximum outdoor air temperature.
- The results presented here are expected to be used as empirical evidence to refine end-use electricity demand modelling for new housing developments in South Australia and other Australian locations that also experience moderate to hot climate; these can then be used to assist the design of electrical infrastructure requirements in new low energy housing developments.