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Context
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• 40% of energy consumed by 
buildings worldwide

• Strategies for 
– Energy conservation

– Energy savings

• Better coordination among 
Building Automation Systems 
(FP7 SCUBA project)

• One of TOPAs objectives: advanced control techniques
– Ventilation

– Heating

 Energy savings

 Take into account “user comfort”, at least bounds on Temp. & CO2



Objectives
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• Develop a generic (D)MPC 
framework to support control 
design

• Deploy, Test and Validate
– Post-grad room in NIMBUS

– Improve thermal comfort and air 
quality

– Energy savings

– Peak demand management / energy 
cost

• Post-grad room : open office in NIMBUS building

– CIT Campus, Cork, Ireland

– Climate zone : temperate maritime (mild winter, cool summer, regular rains)



Outline
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• Context and objectives

• “System” under study

• Modelling
– Thermal: white-box lumped capacitance (2RC)

– CO2 concentration: mass balance

• Model Predictive Control for thermal and CO2 regulation

• Implementation in real field
– Model tuning with real field data

– Modelling for control?

• Next steps



“System” under study
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• NIMBUS – Proof of Concept
– Post-grad area split in 3 zones 

– White box model 

• CO2 concentration, thermal RC equivalent model

– Coupling between zones (CO2 and temp.)

– Natural ventilation, controlled openings (windows)

– Outdoor conditions

– Modular  “extendable”

3 virtual zones 
single space



Modelling - Thermal
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• For each zone:

Simplified Lumped capacitance 
model (2RC)
– Coupling between zones (natural 

convective heat transfer)

– Influence of #occupants 

– Influence of heaters (r)

– Influence of openings (natural leak, 
windows opening) (outdoor 
temperature)

– For zone 1: 6 ODEs:

T1, Tsw, Tww, Tf, Tc, Tr

– Similar approach for other zones
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S. Walker et al., IFAC WC 2017



Modelling – CO2 concentration
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• For each zone:

Mass balance
– Coupling between zone (diffusion 

via Fick’s law)

– Influence of openings (natural 
leak, windows opening) (outdoor 
CO2)

– Influence of #occupants

• Uniform distribution over the 
room 

– 1 ODE per zone

For both parts of the model:
parameters fixed thanks to basic 
knowledge on building materials, 
building geometry, mean CO2 
production and heat per occupant

Continuous time linear model

S. Walker et al., IFAC WC 2017
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Application of Model Predictive Control to NIMBUS
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(D)MPC framework 

x1

x2

x3

Measurements per zone: 
temperature, heating power, 
CO2 level, windows opening
Measurements for the room:
#occupants

Thermal Comfort

Energy price

Indoor air quality

Control objectives

Windows 
opening

Maximum 
heating power

Constraints

MPC1
u1

u2

MPC3
u3

MPC2

Zone occupancy

Outdoor
Temperature

Information exchange 
between zones : possibly, 
#occupants, heating 
power, windows opening



•External 
conditions

•Occupancy / 
outdoor 
temperature

Objectives

Power 
Consumption 

(kWh)

Conventional 
Control
(on/off)

Centralized 
Control
(CMPC)

Decentralized
Control 

(DeMPC) 

Total 181 127,83 138,59

Gain compared 
with conventional 

controller
0% 30% 23,5%

reference

decentralised

centralised

reference decentralised
centralised

Number of 
states

Number of 
inequalities
/equalities

Average optimi. 
time per sampling 
time (normalized)

CPMC 21 660 4.7

DeMPC 7 220 1

Results in simulation
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Outline
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• Context and objectives

• “System” under study

• Modelling
– Thermal: white-box lumped capacitance (2RC)

– CO2 concentration: mass balance

• Model Predictive Control for thermal and CO2 regulation

• Implementation in real field using the (D)MPC framework
– Model tuning with real field data

– Modelling for control?

• Next steps



Implementation of control in real-field using (D)MPC 
framework
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• Have a realistic comportemental model

– Parameter identification መ𝜃 for model tuning

• Instead of R and C, identify time constants 𝜏 = 𝑅𝐶

• Building geometry known

– Non-linear optimisation pb with constraints (+ODE integration)

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑥 𝑡, 𝜃 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠(𝑡) 2
2

s.t. 𝜃 𝜖 𝜃𝑚𝑖𝑛 , 𝜃𝑚𝑎𝑥

where 
𝑑𝑥

𝑑𝑡
= 𝑓 𝑥, 𝑢, 𝑡, 𝜃



Model tuning
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• Data extracted from TOPAs  oBMS

• Parameter identification and model validation for the white-box 
continuous-time non-linear model

Initial model
Measurements
Model tuned

#occupants? Windows opening?



Modelling for Model Predictive Control
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• White box model  state space model for MPC
– Linearisation

– Exact discretisation: matrix exponential

• Use directly identification techniques (Output Error + constraints)?

directly estimate discrete-time state-space model

Take advantage of knowledge from white-box model

Multiple Inputs Single Output (MISO) models

Transfer functions  state-space representation

Sparse matrix Full matrix

No more physical 
meaning for the 
parameters



Modelling for Model Predictive Control
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• As for many industrial systems: availability & reliability of data?
– Data losses (wireless, wired)

– Data accuracy  e.g. #occupants

– Noise 

– Synchronisation 

– Occupancy per zone

• Badge

• Several persons

• No information on the zone  uniform distribution, periodic reset

– Power delivered by heaters

• Coarse estimation (inlet/outlet temperature for the whole floor)

– Windows opening

• Manual ones!

• Controlled ones but also partly non-functioning

2 days of trustful 
data record
 Identification
Validation 

Tuesday 27th JuneMonday 26th June



Modelling for Model Predictive Control
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• Model Inputs: 
– Windows opening per zone: w1 (N.U.),   w2(N.U.),   w3 (N.U.) 

– Heaters: P1 (kW),   P2 (kW), P3 (kW)

– Tout (°C)

– #occupants: Nb1 (N.U.),   Nb2 (N.U.),   Nb3 (N.U.)

• Model Output: T1 (°C) = 𝑦

𝑥 𝑘+1 = 𝐴 𝑥 𝑘 + 𝐵1

𝑤1

𝑤2

𝑤3

+ 𝐵2

𝑃1
𝑃2
𝑃3

+ 𝐵3 𝑇𝑜𝑢𝑡 + 𝐵4

𝑁𝑏1
𝑁𝑏2
𝑁𝑏3

𝑇1 = 𝑦𝑘 = 1 1 1 𝑥𝑘 + 𝐷 𝑢 𝑘

𝑢

Control inputs Measured “disturbances”

For zone 1



Modelling for Model Predictive Control
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• Model selection: standard deviation, pole/zero simplification, 
goodness of fit …

Model validation with another set of data



Modelling for Model Predictive Control
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• Model Inputs:
– Nb1 (N.U.),   Nb2 (N.U.),   Nb3 (N.U.)

– windowZ1 (N.U.),   windowZ2(N.U.),   windowZ3 (N.U.),   

• Model Output: CO2z2 (ppm) = 𝑦

𝑥 𝑘+1 = 𝐴 𝑥 𝑘 + 𝐵1

𝑁𝑏1
𝑁𝑏2
𝑁𝑏3

+ 𝐵2

𝑤1

𝑤2

𝑤3

𝐶𝑂2𝑧1 = 𝑦𝑘 = 1 0 0 𝑥𝑘 + 𝐷 𝑢 𝑘

𝑢

For zone 1

Control
inputs

Measured
“disturbances”



Modelling for Model Predictive Control
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• Model selection: standard deviation, pole/zero simplification, 
goodness of fit …

Model validation with another set of data
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Next steps
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• Currently under implementation on NIMBUS
– (D)MPC framework developed by CIT

– through LINC middleware (M. Louvel, presentation on Wednesday)

• Model improvement
– Take solar irradiance into account

– Longer period of time for identification / validation

• TOPAs: “GAP reduction”
– Model re-adaptation when the “gap” (prediction / measure) is too large


