

Thermal control in building using MPC under air quality constraints

Suzanne Lesecq¹, Shalika Walker² Samira Roshany-Yamchi³, Susan Rea³, Alan McGuibney³, Kritchai Witheephanich³, Maxime Louvel^{1,} Mykhailo Zarudniev¹ ¹CEA, ²TU/e, ³CIT Suzanne.lesecq@cea.fr

This work is supported by TOPAs H2020 project, GA nb 676760 (<u>https://www.topas-eeb.eu/</u>).

Context

- 40% of energy consumed by buildings worldwide
- Strategies for
 - Energy conservation
 - Energy savings
- Better coordination among Building Automation Systems (FP7 SCUBA project)
- One of TOPAs objectives: advanced control techniques
 - Ventilation
 - Heating
- \rightarrow Energy savings
- \rightarrow Take into account "user comfort", at least bounds on Temp. & CO2

Objectives

- Develop a generic (D)MPC framework to support control design
- Deploy, Test and Validate
 - Post-grad room in NIMBUS
 - Improve thermal comfort and air quality
 - Energy savings
 - Peak demand management / energy cost

- Post-grad room : open office in NIMBUS building
 - CIT Campus, Cork, Ireland
 - Climate zone : temperate maritime (mild winter, cool summer, regular rains)

- Context and objectives
- "System" under study
- Modelling
 - Thermal: white-box lumped capacitance (2RC)
 - CO2 concentration: mass balance
- Model Predictive Control for thermal and CO2 regulation
- Implementation in real field
 - Model tuning with real field data
 - Modelling for control?
- Next steps

"System" under study

- NIMBUS Proof of Concept
 - Post-grad area split in 3 zones
 - White box model
 - CO2 concentration, thermal RC equivalent model
 - Coupling between zones (CO2 and temp.)
 - Natural ventilation, controlled openings (windows)
 - Outdoor conditions

- TOPAs
- For each zone:
 Simplified Lumped capacitance model (2RC)
 - Coupling between zones (natural convective heat transfer)
 - Influence of **#occupants** ϕ
 - Influence of heaters (r)
 - Influence of openings (natural leak, windows opening) (outdoor temperature)
 - For zone 1: 6 ODEs:
 T1, Tsw, Tww, Tf, Tc, Tr
 - Similar approach for other zones

Continuous

linear model

time non-

• For each zone:

Mass balance

- Coupling between zone (diffusion via Fick's law)
- Influence of openings (natural leak, windows opening) (outdoor CO2)
- Influence of #occupants
 - Uniform distribution over the room
- 1 ODE per zone

Continuous time linear model

For both parts of the model: parameters fixed thanks to basic knowledge on building materials, building geometry, mean CO2 production and heat per occupant

- Context and objectives
- "System" under study
- Modelling
 - Thermal: white-box lumped capacitance (2RC)
 - CO2 concentration: mass balance
- Model Predictive Control for thermal and CO2 regulation
- Implementation in real field
 - Model tuning with real field data
 - Modelling for control?
- Next steps

Application of Model Predictive Control to NIMBUS

Energy

Comfort

Results in simulation

Power Consumption (kWh)	Conventional Control (on/off)	Centralized Control (CMPC)	Decentralized Control (DeMPC)
Total	181	127,83	138,59
Gain compared with conventional controller	0%	30%	23,5%

	Number of states	Number of inequalities /equalities	Average optimi. time per sampling time (normalized)
СРМС	21	660	4.7
DeMPC	7	220	1

- Context and objectives
- "System" under study
- Modelling
 - Thermal: white-box lumped capacitance (2RC)
 - CO2 concentration: mass balance
- Model Predictive Control for thermal and CO2 regulation
- Implementation in real field using the (D)MPC framework
 - Model tuning with real field data
 - Modelling for control?
- Next steps

- Have a realistic comportemental model
 - Parameter identification $\hat{\theta}$ for model tuning
 - Instead of *R* and *C*, identify time constants $\tau = RC$
 - Building geometry known

- Non-linear optimisation pb with constraints (+ODE integration)

$$\hat{\theta} = argmin\{\|x(t, \theta) - measures(t)\|_{2}^{2}\}$$

s.t. $\theta \in [\theta_{min}, \theta_{max}]$
where $\frac{dx}{dt} = f(x, u, t, \theta)$

- Data extracted from TOPAs oBMS
- Parameter identification and model validation for the white-box continuous-time non-linear model

- White box model \rightarrow state space model for MPC
 - Linearisation
 - Exact discretisation: matrix exponential

- Use directly identification techniques (Output Error + constraints)?
 - \rightarrow directly estimate discrete-time state-space model
 - → Take advantage of **knowledge** from **white-box model**
 - → Multiple Inputs Single Output (MISO) models
 - \rightarrow Transfer functions \rightarrow state-space representation

- As for many industrial systems: availability & reliability of data?
 - Data losses (wireless, wired)
 - Data accuracy \rightarrow e.g. #occupants
 - Noise
 - Synchronisation
 - Occupancy per zone
 - Badge
 - Several persons

- No information on the zone \rightarrow uniform distribution, periodic reset
- Power delivered by heaters
 - Coarse estimation (inlet/outlet temperature for the whole floor)
- Windows opening
 - Manual ones!
 - Controlled ones but also partly non-functioning

2 days of trustful
data record
→ Identification
→ Validation

- Windows opening per zone: w_1 (N.U.), w_2 (N.U.), w_3 (N.U.)

$$\begin{bmatrix} u \end{bmatrix}$$
 – Heaters: P₁ (kW), P₂ (kW), P₃ (kW)

- #occupants: Nb₁ (N.U.), Nb₂ (N.U.), Nb₃ (N.U.)
- Model Output: T_1 (°C) = y

$$[x]_{k+1} = [A][x]_k + B_1 \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} + B_2 \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix} + B_3 [T_{out}] + B_4 \begin{bmatrix} Nb_1 \\ Nb_2 \\ Nb_3 \end{bmatrix}$$

Control inputs Measured "disturbances"
$$T_1 = y_k = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} x_k + D[u]_k$$

 Model selection: standard deviation, pole/zero simplification, goodness of fit ...

Model validation with another set of data

- Nb1 (N.U.), Nb2 (N.U.), Nb3 (N.U.)
- [u] windowZ1 (N.U.), windowZ2 (N.U.), windowZ3 (N.U.),
 - Model Output: $CO2_{z2}$ (ppm) = y

$$[x]_{k+1} = [A][x]_k + B_1 \begin{bmatrix} Nb_1 \\ Nb_2 \\ Nb_3 \end{bmatrix} + B_2 \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}$$

Measured Control
"disturbances" inputs

$$CO2_{z1} = y_k = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x_k + D[u]_k$$

For zone 1

DIE(BROUGH L

 Model selection: standard deviation, pole/zero simplification, goodness of fit ...

Model validation with another set of data

- Context and objectives
- "System" under study
- Modelling
 - Thermal: white-box lumped capacitance (2RC)
 - CO2 concentration: mass balance
- Model Predictive Control for thermal and CO2 regulation
- Implementation in real field
 - Model tuning with real field data
 - Modelling for control?
- Next steps

Next steps

- Currently under implementation on NIMBUS
 - (D)MPC framework developed by CIT
 - through LINC middleware (M. Louvel, presentation on Wednesday)
- Model improvement
 - Take solar irradiance into account
 - Longer period of time for identification / validation
- TOPAs: "GAP reduction"
 - Model re-adaptation when the "gap" (prediction / measure) is too large