

Techno-Economic Feasibility of a Hybrid Power Generation System

Sanjay Mukherjee and Abhishek Asthana,

Sustainable Places 2017

28th-30th June Middlesbrough UK Teesside University

Sheffield Hallam University

Background

- Connecting communities with continuous electrical supply has always been challenging in developing economies, especially in isolated areas.
- According to International Energy Agency, 17% of global population, predominantly living in rural areas, did not have access to electricity in the year 2016.
- Converting chemical energy of fossil fuels into electricity releases greenhouse gas (GHG), primarily carbon dioxide (CO₂), into the atmosphere.
- The cost of conventional energy resources will increase in future, as the availability and the fetching of these resources becomes more challenging.

Renewable Energy

Challenges:

- Large area requirements for solar photovoltaic power plants.
- The fluctuations in wind speed and solar radiation with seasons and day-night cycles can cause interruption in continuous power supply.
- Requires huge energy storage capacity to ensure continuous power supply.
- High capital cost due to larger number of batteries.

Hybrid Power Generation

- Mixture of more than one energy source.
- The high intensity availability of one source could subdue the weakness or unavailability of the other.
- Reduce fluctuations in power generation.
- Cut down the large area required for PV system.

Challenges:

- Batteries still required.
- Produce excess energy (unused and not stored) during high wind speeds and solar radiations.
- Require more batteries to store this excess energy.
- Sizing of individual energy system increases design complexity.

Hybrid Power Generation with Backup System

Diesel Generator unit for backup

- Reduces the amount of excess energy by carefully optimising the size of individual systems.
- Requires less batteries.
- Produces GHG from diesel generator.

Hybrid Power Generation with Backup System

Grid supply for backup

- Excess energy is not wasted and sold to grid.
- No batteries required.
- Negative emissions.

Project Site

- Site type : Community
- Site location : Latitude: 31.10; Longitude: 77.17.
- Annual Average electricity consumption : **165.29** kWh/day.
- Peak load : **24.57** kW.
- Annual solar radiation range: **4.76 7.16** kWh/m²/day.
- Monthly average wind speed range in an year: 4.7 7.16 m/s

Hybrid Plant Model

- Modelling and optimisation tool for energy systems involving renewable and non-renewable energy sources.
- Developed at the National Renewable Energy Laboratory (NREL), and enhanced and distributed by HOMER Energy.

Model 1: Wind and Solar with grid backup

Model 2: Wind and Solar with diesel generator backup (Standalone system)

+

Model 1: Wind and Solar with grid backup

Wind Turbine System Size: 10 kW

Solar PV System Size: 46 kW

Grid Supply COE : £0.055 / kWh

Model 2: Standalone System

Wind Turbine System Size: 20 kW

Diesel Generator Size: 28 kWh

Inverter Size: 8.26 kW

Solar PV System Size: 21.6 kW

Battery Size: 51 kWh

Simulation Results : Model 1

Electricity generation and COE

Quantity	Units	Value	
Production by PV	kWh/year		81,633
Production by wind turbine	kWh/year		17,626
Energy purchased from Grid	kWh		24,554
Total electricity production	kWh/year		123,814
Renewable fraction	%		80.1
Total electricity consumption	kWh/year		60,330
Excess electricity	kWh		63,483
Levelised COE	£/kWh		0.0297
Payback	years		< 13.8

Emissions from a hybrid system and a grid supply system

Quantity	Units	Model 1	Grid
Carbon Dioxide	kg/year	-24,603	38,129
Carbon Monoxide	kg/year	0	0
Unburned Hydrocarbons	kg/year	0	0
Particulate Matter	kg/year	0	0
Sulfur Dioxide	kg/year	-107	165
Nitrogen Oxides	kg/year	-52.2	80.8

Cost summary (all costs are in £)

Component	Initial Capital	Replacement	O&M	Fuel	Salvage	Total
One 10 kW Wind Turbine	16,000	0	1,278	0	0	17,278
Lead Acid Battery	300	208	127	0	-28	608
Flat plate PV	46,509	0	5,945	0	0	52 <i>,</i> 455
Inverter	10	4	0	0	-0.85	14
Grid	0	0	-23,312	0	0	-23,312
Overall system	62,820	213	-15,961	0	-28	47,044

Simulation Results : Model 2

Electricity generation and COE

Quantity	Units	Value
Production from PV	kWh/year	37,922
Production by wind turbine	kWh/year	35,253
Production by diesel generator	kWh/year	18,292
Fuel consumption by diesel generator	L/year	6,892
Total electricity production	kWh/year	91,466
Renewable fraction	%	69.7
Total electricity consumption	kWh/year	60,330
Excess electricity	kWh	27,928
Levelised COE	£/kWh	0.255

Emissions from a hybrid system and a grid supply system

Quantity	Units	Model 2		Grid
Carbon Dioxide	kg/year	18,	041	38,129
Carbon Monoxide	kg/year		114	0
Unburned Hydrocarbons	kg/year	2	1.96	0
Particulate Matter	kg/year	0.	689	0
Sulfur Dioxide	kg/year	Ĺ	14.2	165
Nitrogen Oxides	kg/year		107	80.8

Cost summary (all costs are in £)

Component	Initial Capital	Replacement	O&M	Fuel	Salvage	Total
Diesel Genset	8,456	11,111	10,539	59,030	1,434	87,702
Two 10 kW Wind Turbine	32,000	0	2,556	0	0	34,556
51 Lead Acid Battery	15,300	27,850	6,519	0	-2,783	46,886
Flat plate PV	21,605	0	2,761	0	0	24,367
Inverter	2,477	1,033	0	0	-192.40	3,318
Overall system	79,839	39,996	22,377	59,030	-4,411	196,831

Summary

Quantity	Units	Model 1	Model 2	Grid
Production from PV	kWh/year	81,633	37,922	-
Production by wind turbine	kWh/year	17,626	35,253	-
Production by diesel generator	kWh/year	-	18,292	-
Energy purchased from Grid	kWh	24,554	-	60,330
Total electricity production	kWh/year	123,814	91,466	-
Renewable fraction	%	80.1	69.7	0
Total electricity consumption	kWh/year	60,330	60,330	60,330
Excess electricity	kWh	63,483	27,928	-
Overall system cost (NPC)	£	47,044	196,831	-
Levelised COE	£/kWh	0.0297	0.255	0.055
CO ₂ emissions	kg/year	-24,603	18,041	38,129

- The COE for Model 1 is ~47% lower than the grid price, whereas Model 2 has 5 times higher COE than grid price.
- The net present cost (NPC) of Model 1 is 4 times less than Model 2.
- The share of electricity from renewables in Model 1 is 15% higher than Model 2.
- Both Model 1 and 2 cuts CO₂ emissions.

Thank you

Any questions ?

Dr Sanjay Mukherjee

s.mukherjee@shu.ac.uk

+44 (0)114 225 4711