STORY

The STORY continues: The added value storage can bring to flexible and secure energy networks, second year of work

SP17, Mia Ala-Juusela, Middlesbrough

About STORY

S T O R Y

Table of contents

- General project information
- Objectives
- Methodology
- Project demonstrations
- Impact creation

General project information

- 18 institutions from 8 countries
- Coordinator: VTT
- Technical coordinator: Th!nk E
- Horizon 2020 (LCE-08-2014)
- Start: May 1st, 2015 (Duration: 60 months)
- Budget: 15,8 million Euro

Project partners

S T O R Y

15.06.2017

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 646426

Objectives

Show the added value of storage in the distribution grid

- To demonstrate and evaluate innovative approaches for energy storage systems
- To find solutions, which are affordable, secure and ensure an increased percentage of self-supply of electricity
- To accelerate innovation and business models for deployment of storage at local level.

15.06.2017

Methodology

• Project demonstrations

- Technology Readiness Level (TRL) 5 to 7
- Interoperability
- ICT
- Validate large scale models
- Understand impact (economic, environmental)
 - At demonstration level
 - At level of grid
- Create framework for viable business cases

Overview

- 1. Residential building (Oud-Heverlee, Belgium)
- 2. Roll out of a neighbourhood (Oud-Heverlee, Belgium)
- 3. Storage in factory (Navarra, Spain)
- 4. Storage in residential district (Lecale, Northern Ireland)
- 5. Flexibility and robustness of medium scale storage unit in:
 - 1. Industrial area (Hagen, Germany and Kranj, Slovenia)
 - 2. Residential area (Suha, Slovenia)
- Roll out of private multi-energy grid in industrial area (Olen, Belgium)

15.06.2017

1. Demonstration in residential building (Oud-Heverlee, Belgium)

Site contains 5 new and old buildings at the end of the electricity line

- Technologies (new or existing)
 - PV, PV-Thermal, vacuum collectors
 - Natural gas, oil, heat pumps
 - 2 electric vehicles
 - Load shifting
- Storage type (new)
 - Batteries
 - Small and large scale thermal water storage (low and high temperature)
 - Fuel cells
 - ICT at building level (interoperability)

1. Demonstration in residential building (Oud-Heverlee, Belgium)

- Building 1
 - $U < 0.1 W/m^{2}K$
 - LED
 - Smart 2-zone ventilation: continuous measuring of CO₂, T and humidity
 - Smart house hold appliances
 - KNX home control
 - Shallow geothermal
 - Electric vehicle
 - PV-Thermal and vacuum collectors
 - Hot water tanks / cooling basins
 - 2 batteries

2. Demonstrating the roll out of a neighbourhood (Oud-Heverlee, Belgium)

Additional 7 buildings compose last part of the line with its specific challenges

- Buildings from demo 1 are connected, combined with another 7 buildings -> microgrid
- ICT will integrate operation of thermal storages, heat pumps, fuel cell, PV and batteries and optimize it at the neighborhood scale
- A hardware solution for black-outs will be implemented using the actual grid configuration

3. Demonstration of storage in factory (Navarra, Spain)

Site is located in an industrial zone in Navarra.

- Existing situation
 - Facility produces professional fridge rooms and requires high power peak values (280 kW)
 - Installed 113 kWp PV does not deliver expected cost savings
- Objectives and technologies
 - 50 kW, 200 kWh Li-Ion battery will be added to improve the business case

- Reduction of peak power
- Demand side management

4. Demonstration of storage in residential district (Lecale, Northern Ireland)

Site is under development to become a complete selfsufficient, greener, cheaper energy grid for the 300 residential buildings • Existing situation

- 250 kW of PV installed
- 2 x 2,5 MW onshore wind turbines
- 500 kW anaerobic digestion unit
- 1.2 MW tidal energy test
- Objectives and technologies
 - Extension with a large scale, medium voltage 250 kW and 2 MWh
 Compressed Air Energy Storage (CAES)
 - To increase security of supply

5. Flexibility and robustness of medium scale storage unit (Germany/Slovenia)

First site is the Enersys factory, where the battery will be placed near the gas engine CHP unit

Objectives and technologies

- Flexible design of medium voltage battery: 800 kW, 660 kWh
- This battery will be tested at 3 different locations
- First location: Hagen, Germany
 - Gas engine cogeneration (CHP) already installed
 - Test flexibility storage unit for peak shaving potential and support for optimization of CHP operation

5. Flexibility and robustness of medium scale storage unit (Germany/Slovenia)

Second site is a village, where the battery will be installed at the Low Voltage (LV) substation

- Second location: Suha, Slovenia
 - 210 kW of PV already installed
 - Low Voltage (LV) network supplied by 400 kVA transformer
- Objectives
 - Demonstration of flexibility and robustness of the battery
- Demonstration starts in 2017

5. Flexibility and robustness of medium scale storage unit (Germany/Slovenia)

Third site is the headquarters of distribution grid operator Elektro Gorensjka, near the Suha residential substation

- Third location: Kranj, Slovenia
 - 2 x 630 kVA transformer station
 - 35 kW PV
 - 27 kW CHP unit
 - 80 kW diesel generator
 - Cold storage (ice bank)
- Objectives
 - Integrated management of these devices with electric storage unit
 - High degree of self-sufficiency
 - Peak demand & voltage control

15.06.2017

6. Roll out of private multi-energy grid in industrial area (Olen, Belgium)

Site is located around a large wood product factory, which has a large amount of wood waste

- Existing situation
 - Old wood-fired boiler
- Objectives and technologies
 - New highly-efficient wood-fired boiler
 - Organic Rankine Cycle (ORC)
 - Large scale thermal energy storage (low and high temperature)

16

- Multi-temperature district heating
- To increase efficiency of ORC
- To reduce power peaks
- To increase self-sufficiency

Result highlights from two first years

- Three demos in full action
- Control strategies
- Control algorithms
- Three-level ICT architecture
- Communication gateways
- Interoperability guidelines
- Common and demo specific KPIs
- Value analysis framework

- Main grid challenges to be addressed by storage solutions
- Large scale scenarios
- Large scale network models
- Large scale network modelling approach
- Business model archetypes
- Understanding of practical barriers for implementation

- Proposing policy and regulatory recommendations that allow implementation of innovative technical solutions and business models for deployment of storage at local level
- Impact created by involving full value chain of technology providers: end users, investors, ICT and storage technology providers, as well as the Distribution System Operators (DSO)

Visit us: horizon2020-story.eu

Q

STORY

A LOG IN

INTRODUCTION CASE STUDIES A STORY TO TELL PROJECT PARTNERS LCE 6-10 BLOG DOWNLOADS CONTACT

Creating the future of energy storage

Watch our movies:

Get in contact with us: <u>contact@horizon2020-story.eu</u>

THANK YOU!

15.06.2017

22

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 646426

Project STORY - H2020-LCE-2014-3