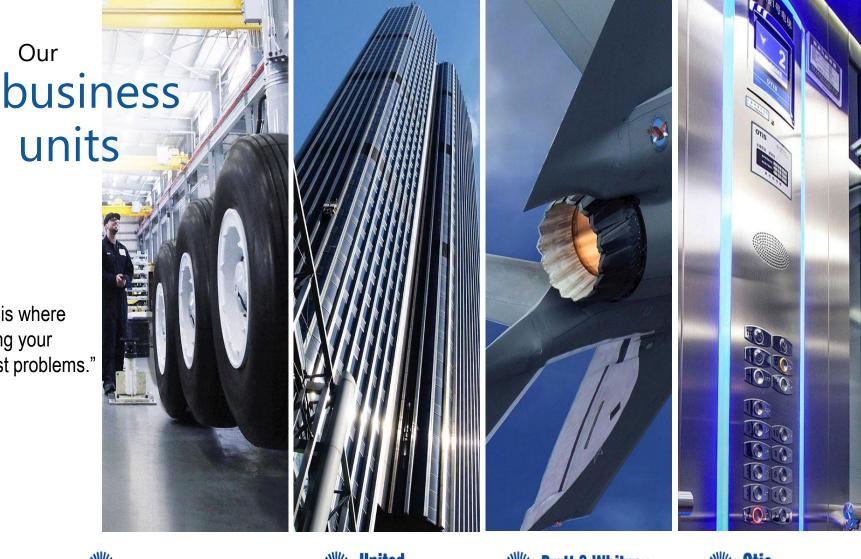


Model-Based Comparative Evaluation of Control-Oriented Retrofit Scenarios

UTRC Team: Hassan Ridouane and Luciano De Tommasi [ridouae@utrc.utc.com]

TUC Team: Georgios Giannakis, Kyriakos Katsigarakis, Georgios N. Lilis and Dimitrios Rovas [<u>rovasd@gmail.com</u>]

June 29th, 2017



Providing high technology systems and services to the aerospace and building industries.

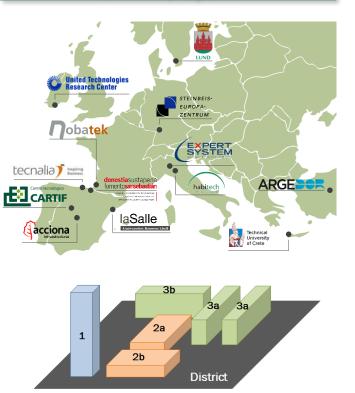
"UTRC is where you bring your toughest problems."

Our

- OptEEmAL Project Objective
- OptEEmAL Project Approach
- Active & Control ECMs Catalogue
- Retrofit Scenario Generation and Evaluation Process
- HVAC and Control ECMs Implementation
- Conclusions

OPTEEMAL OBJECTIVE

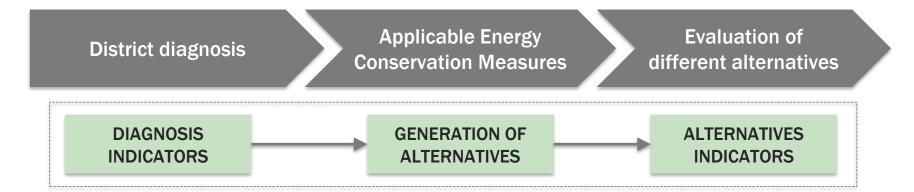
Develop and demonstrate a wed-based platform for retrofits at district level

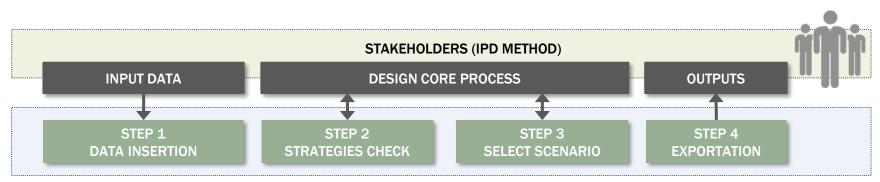

Web-based platform for district energy-efficient retrofitting design to:

- Support integrated design methodologies (IPD methods)
- Systemic delivery of optimised designs
- Reduce uncertainties and time of the design process
- Provide improved solutions compared to Business-as-usual

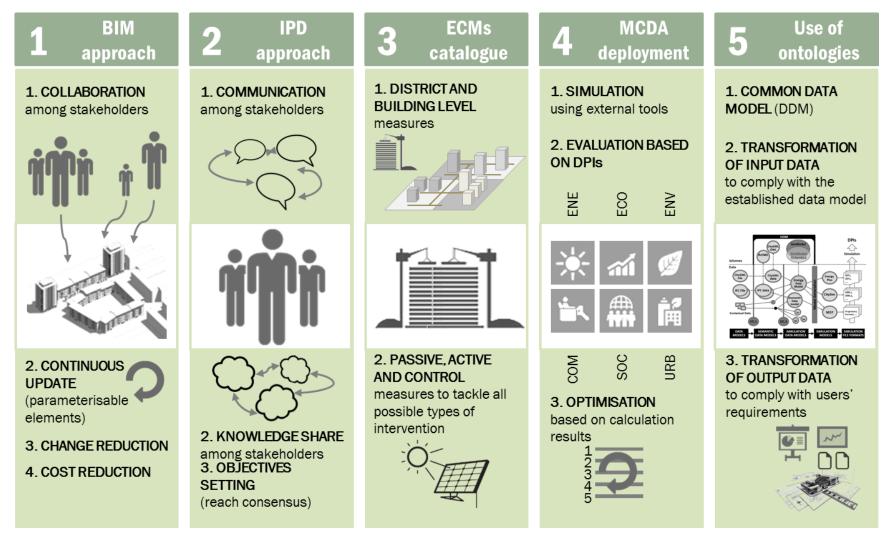
Through a **3-steps process**:

- Diagnosis (using input data) and formulation of scenarios
- Evaluation and optimisation
- Best scenario selection and data exportation to stakeholders

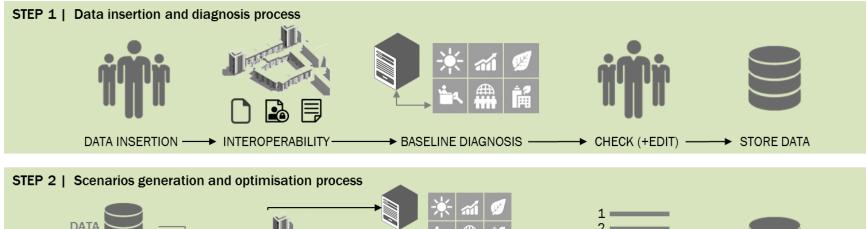

Consortium as a whole: 13 partners, 8 countries Coordinator: Fundación CARTIF, Spain

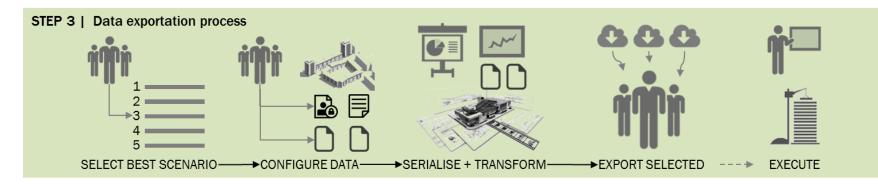

OPTEEMAL OBJECTIVE

OPTEEMAL design process based on IPD approach

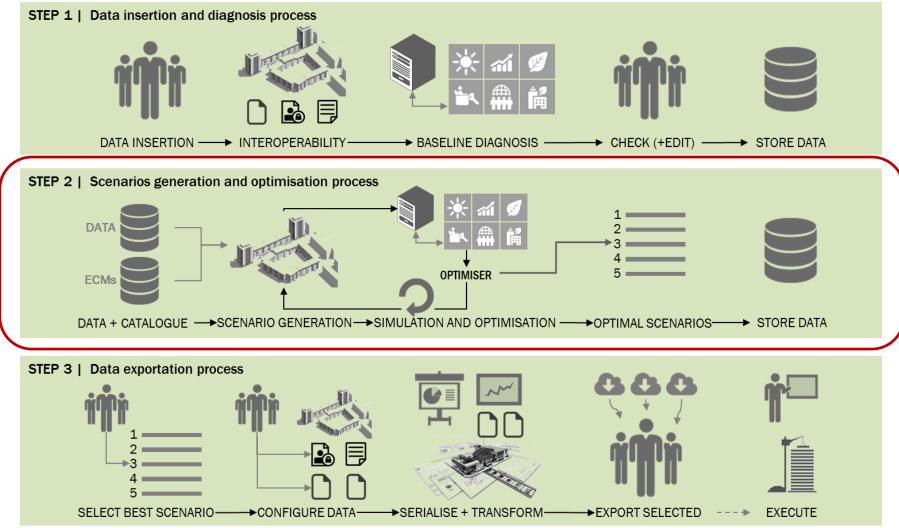

- Catalogue of Energy Conservation Measures
- Selection of indicators to evaluate the current conditions and alternatives
- Selection of tools to calculate the indicators
- Ensure that data is interoperable among different sources for the needed tools

PROJECT APPROACH


OptEEmAL platform integrates 5 main pillars to deliver services


PROJECT APPROACH

Three main processes supported by the platform

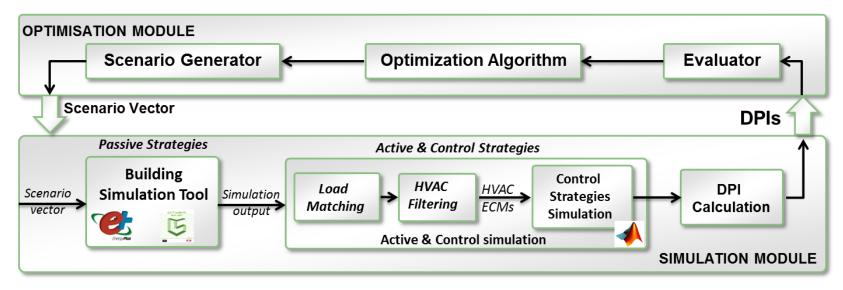


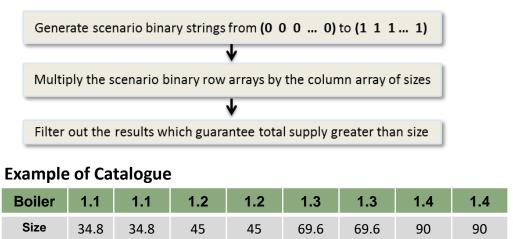
UTC PROPRIETARY – Created at UTRC-I – This page contains EU Technical Data only - ECCN: NLR

PROJECT APPROACH

Three main processes supported by the platform

UTC PROPRIETARY – Created at UTRC-I – This page contains EU Technical Data only - ECCN: NLR


ACTIVE & CONTROL ECMs CATALOGUE


L1	L2	L3	L4	L	Script		
Active ECM		Boiler	Condensing diesel boiler	26 35 44	58 73	Replace	
			Natural gas boiler	15 38 53	143 239 384		
			Condensing natural gas boiler	18 34 49	97 208 369		
	default		Biomass boiler	20 40 60	300 550		
		CombinedHeatPower Unit	Combined Heat Power with natural gas fuel type	50 400 100 500 205		Replace	
		Chiller	Electric reciprocating chiller	38.4 49.9 63.9	85.8 220 450	Replace Replace	
		WaterToAirHeatPump	Default	42 53 69	92 137		
Control		Thermostat	System Scheduling (Therm 1)	Heating Cooling			
			Optimal StartUp and ShutDown (Therm 2)	Heating	Cooling	Install	
	default	Plant Control	Weather Compensation	Heating	Heating / cooling		
			Sequencing Load Following	Heating Heating CT1 Heating CT2	Cooling Heating CT3 Heating CT4		

SCENARIO GENERATION AND EVALUATION

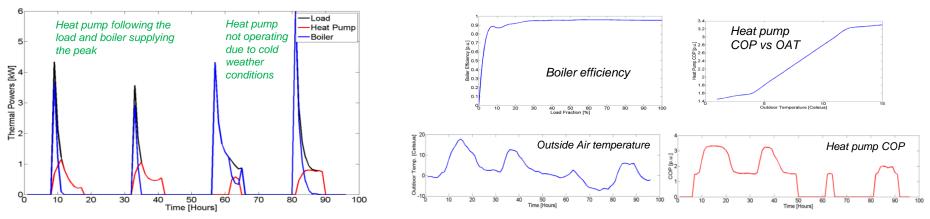
HVAC and controls simulation decoupled from the passive ECM simulation

Process for generation of applicable configurations

		0	0	0	0	0	05.0	50	50	
List of		0	0	0	0	69.6	0	90	90	
		0	0	0	0	69.6	69.6	0	90	
applicable		0	0	0	0	69.6	69.6	90	0	
configurations	>	0	0	0	45	0	0	90	90	
configurations	200 kW	0	0	0	45	0	69.6	0	90	
	8	0	0	0	45	0	69.6	90	0	
		0	0	0	45	69.6	0	0	90	
	g	0	0	0	45	69.6	0	90	0	
	ö	0	0	45	0	0	0	90	90	
	Max Load =	0	0	45	0	0	69.6	0	90	
		0	0	45	0	0	69.6	90	0	
		0	0	45	0	69.6	0	0	90	
		0	0	45	0	69.6	0	90	0	
		0	34.8	0	0	0	0	90	90	
		34.8	0	0	0	0	0	90	90	
	300 kW	0	0	0	0	69.6	69.6	90	90	

0 0 0 0 69 6 90 90

HVAC & CONTROL ECMs IMPLEMENTATION



Heating: Load following control applied to boiler and heat pump – Case 195

Single building supplied by a boiler and heat pump

- Thermal load profile taken from EnergyPlus simulation
- Control ECM decides the thermal power delivered by heat pump and boiler
- Boiler of 6 kW and heat pump of 4 kW with variable efficiency

Simulation Results over a period of four days

Energy and Economic DPI Calculation

Energy DPI: ENE02 Final energy consumption

$$\sum_{t} \left[\frac{P_{bo}(t)}{\eta_{bo}} \Delta t + \frac{P_{hp}(t)}{COP} \Delta t \right] = 50 \ kWh$$

Economic DPI: ECO01 Operational energy cost

$$\sum_{t} \left[C_{gas} \frac{P_{bo}(t)}{\eta_{bo}} \Delta t + C_{grid}(t) \frac{P_{hp}(t)}{COP} \Delta t \right] = 2.52 \notin$$

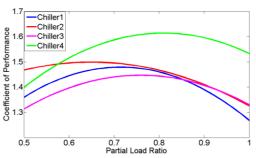
DPI calculation based on

d on $C_{gas} = 0.05 \notin Wh$ and

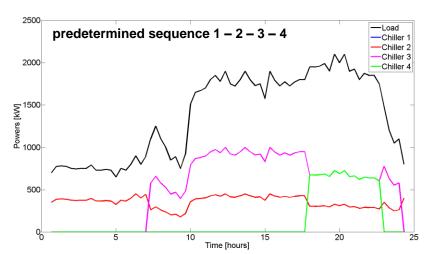

C_{arid} = 0.08 €/kWh

This page contains EU Technical Data only - ECCN: NLR

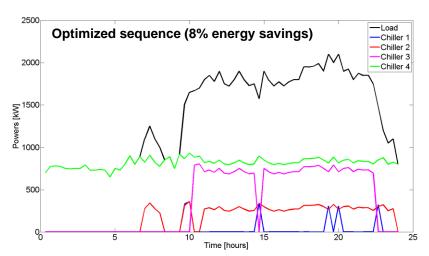
HVAC & CONTROL ECMs IMPLEMENTATION



Cooling: Optimized Sequencing Control applied to chiller plant


District supplied by chiller plant

- Chillers 1&2 : 450 kW max, 225 kW min
- Chiller 3&4 : 1000 kW max, 500 kW min
- Thermal load profile taken as input
- Control ECM decides chiller sequencing and power set-points for each chiller


Baseline state – before retrofit

- Pre-determinate ON/OFF chiller sequence
- Total load shared proportionally to each Chiller size.
- COPs not used to determine Chillers set-points

Optimized sequence – post retrofit

- Combinatorial optimization to determine possible combinations of Chillers which meet the load
- Nonlinear optimization to optimize each possible scenario accounting for chiller COPs

Created at UTRC-I - This page contains EU Technical Data only - ECCN: NLR

- OptEEmAL is developing an innovative wed-based platform for retrofits at district level
- OptEEmAL platform integrates BIM, IPD, ECMs catalogue, MCDA and DDM to deliver optimal retrofit design
- In addition to the classical passive and active ECMs, OptEEmAL introduced control ECMs and integrated a process to determine their impact
- Two control ECMs have been implemented showing significant improvements in system operation
- The proposed simulation framework will enable system designers to easily generate, evaluate and compare multiple refurbishment configurations – including existing and future controls
- The model based approach and ECMs catalogue can be integrated and fully automated to generate and analyze retrofit scenarios using relevant district performance indicators