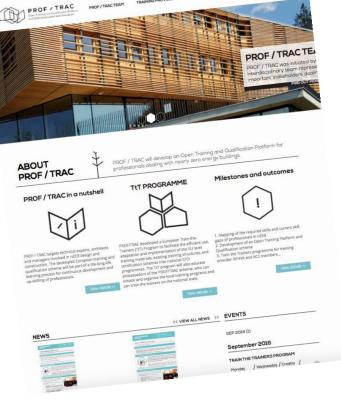


PROF / TRAC

PROFessional multi-disciplinary TRAining and Continuing development in skills for NZEB principles


Presenting: a novel and rapid nZEB skills mapping and qualification framework methodology

What is the PROF/TRAC overall goal?

- Develop and maintain an Open Education
 Platform for Continuing Professional
 Development for professionals in the building sector.
- This platform addresses technical experts,
 engineers, architects and building managers
 middle and senior professionals
- Developed European qualification scheme as part of a life-long learning process for continuing development and up-skilling of professionals.

www.proftrac.eu

THE OVERALL APPROACH OF PROF/TRAC:

The overall approach is based on the following four pillars:

- The use of successful structures for mapping of present and needed qualifications and identifying the current skills gaps.
- An efficient use, adaption and implementation of existing training structures, training materials and qualification schemes to come to a direct and swift implementation of the action.
- The direct involvement of the most important European umbrella organisations for the sectors addressed to gain an EUwide support from concerned professional branches and to ensure the sustainability of the action after the project duration.
- A quick and efficient start of a central train the trainers program
 to create 'ambassadors' who can initiate and organise the
 national training programs and can train the trainers on national
 scale and who are able to create a 'snowball effect'

BuildUp Skills

IDES-EDU Powerhouse

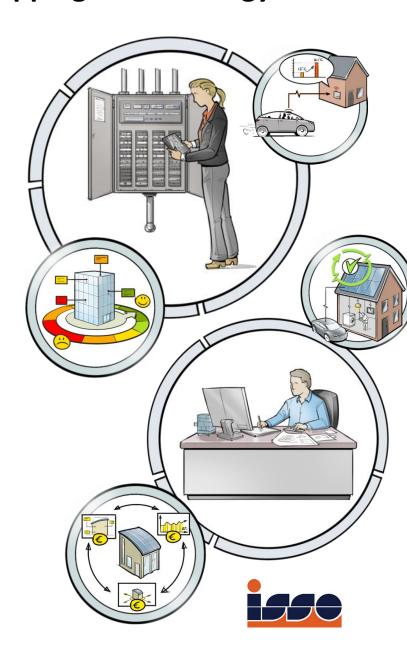
REHVA ACE Housing Europe

members as national training providers

WHO ARE WE?:

The PROF/TRAC consortium

Parti	icipant No	Participant organisation name		Country	Role
1	Huygen Ingenteurs & advineurs	Huygen Installatie Adviseurs	HIA	NL	Coordinator
2	REHVA Stretonica ed	Federation of European Heating, Ventilation and Air	REHVA	EU (NL)	EU
	Fedoration of Empress Hairing, Vereitation and Ar-Conditioning Arasociations	Conditioning Associations			associations
3 🙈	ARCHITECTS' COUNCIL OF EUROPE CONSEIL DES ARCHITECTES D'EUROPE	Architects' Council Europe	ACE	EU (BE)	representing
4	HOUSING SLECOF	Housing Europe	HE	EU (BE)	their branch
5		ISSO	ISSO	NL	Knowledge
6	Instituto Valenciano de 1986-2016 la Edificación	Valencia Institute of Building	IVE	ES	and
7	<i>1</i> =25	Czech Technical University Prague	CVUT	CZ	methodology
8	ALL	Aalborg University	AAU	DK	providers
9	☑ Danvak	DANVAK	DANVAK	DK	
10	9	Croatian Chamber of Mechanical Engineers	HKIS	HR	
11	Atecyr	Spanish Technical Association of HVAC and Refrigeration	ATECYR	ES	Training
12	≜ TVVL	TVVL	TVVL	NL	Training
13	ČKAII	Czech Chamber of Chartered Engineers and Technicians	CKAIT	CZ	providers
14	ZECHTYKIA ZA ARTHECERSO BEFERSOZE LUOZENIE	Chamber of Architecture and Spatial Planning of Slovenia	ZAPS	SI	
15	C N A PROGRAM	Italian Chamber of Architects	CNAPPC	IT	



Introduction of the developed skills mapping methodology

Mapping of the skills and current skill gaps in nZEB

- Adapting methodologies of national BUILD UP Skills actions
- Developed by ISSO, REHVA and ACE members
- Methodology available on www.proftrac.eu/publications/reports
- Done in 7 member states

Development of the PROF/TRAC nZEB skills mapping

Definition

- Relevant professions
- Skills levels
- Relevant nZEB technologies (energy management, production, reduction)
- Interdisciplinary skills

Inventory

- Mapping of current skills levels and the number of professionals
- Done by national, interdisciplinary expert team

Skills gaps

• Identifying skills gaps at the defined skills levels for all the involved professions

Roadmap development

- Matching the need for professionals by 2020 and beyond with the current status
- Training action plan according the identified training need

Some results

Professional

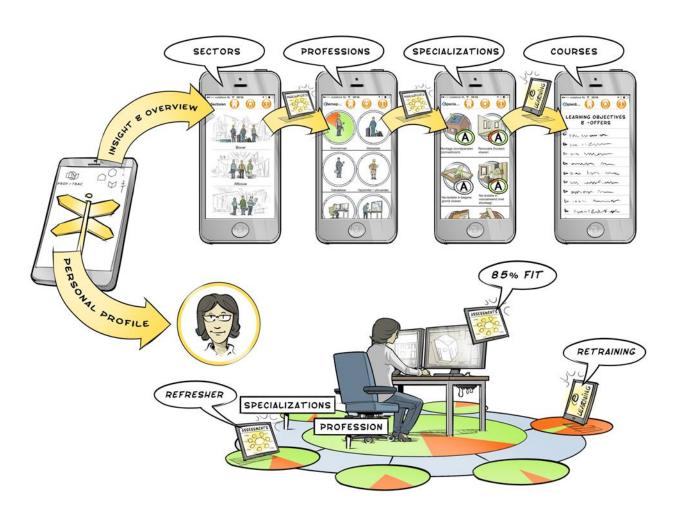
CODE	TECHNOLOGY, INTERDISCIPLINARY SKILLS AND PROFESSIONS	Mechanical Engineer						В	Building aut. Engineer								
	Skills	current	nZEB	Gap	1	» س Sk	٤lls	5 gap	current	nZEB	Gap	1	2	3	4	5	
M	ENERGY MANAGEMENT					fro	m l	evel									
EM1	Smart grid systems	2	2	0] -	2 to	. 2		4	1						
EM2	Domotic systems	2	2	0			10	<u> </u>	T4	5	1						
EM3	Building management systems	2	3	1					4	5	1						
Р	ENERGY PRODUCTION (on-site and nearby																
EP1	Geothermal energy	3	3	0					2	3	1					\Box	
EP2	Biomass	2	2	0					1	2	1						
EP3	Biogass	2	2	0					1	2	1						
EP4	District heating and cooling			1					2	3	1						
EP5	Heatpumps			2					3	3	0						
EP6	Solar power systems for electricity generation		2	0					3	3	0						
EP7	Solar thermal systems for cooling generation	2	4	2					2	2	0						
EP8	Solar thermal systems for domestic hot water	3	4	1					2	2	0					\Box	

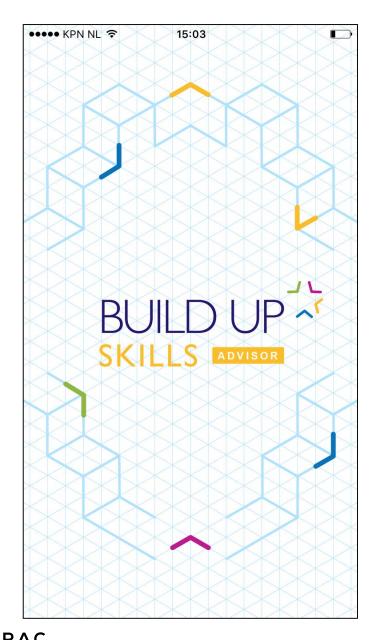
- Not applicable / no knowledge and skills required
- 1 Has little knowledge and skills with respect to the relevant field / technology
- Understands basic knowledge and has practical skills within the field, is able to solve problems by selecting and applying basic methods, tools, materials and information
- Has comprehensive, factual and theoretical knowledge, is capable of solving problems within the field
- Has advanced knowledge involving a critical understanding of theories and principles and skills, required to solve complex and unpredictable problems in the field and is aware of the boundaries
- Has specialised knowledge and problem-solving skills, partly at the forefront of knowledge in the field, in order to develop new knowledge and procedures and to integrate knowledge from different fields

Usage of the results in developing a Roadmap

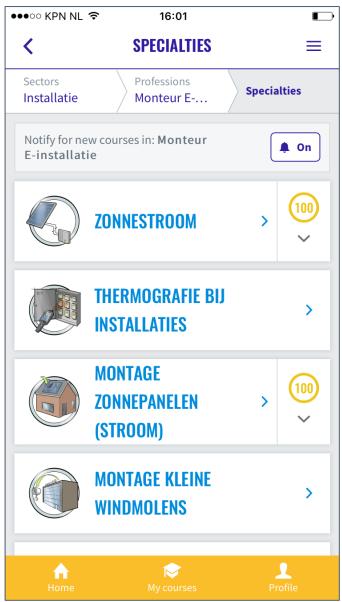
- Roadmaps have been developed on a national and EU-wide level.
- The national roadmaps focus on successful national implementation of nZEB trainings for professionals.
- The EU roadmap does the same for the EU, but focuses on similarities or corresponding outcomes of the member states

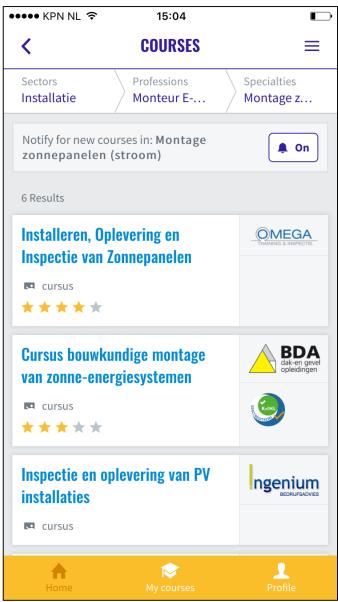
Creating an **EU-Qualification framework** for **C**ontinuing **Professional Development (CPD)**Technology


EP5	Planning and design of heat pump installations	cool mak low	energy production for heating, cooling and potable hot water, making use of an energy source with low temperature and bringing it to a higher temperature.								
			Workfield					V	Workfiel		
Project phase	General description and subtasks		Architecture	Mechanical Engineering	Electrical Engineering	Structural energeering	nent	ng and procurement	g management	lovala	
	Tasks	Arch	Med	Elec	Stru	Con		KIII-،	levels		
General	General knowledge of heat pumps, design and application	Task	1	4	2	1	1	1	1		
Pre design	Performance of a feasibility study	description	2	5	3	1	1	1	-		
	Can make an inventory of available heat sources and identify possibilities or restr	aints		х							
	Can estimate the heat loss of the building, to perform feasibility study of heat pumps Inventory of possible heat pumps and available sources (e.g. outdoor air, exhaust air, soil, rivers)						sk-	ow	ner		
	Estimate the needed electrical power and oversee consequences for electrical ins	tallation		х	х						
	Can determine construction boundaries e.g. needed space, weight.	х	х	х	х						



Integration of the skills mapping and the EU-Qualification Framework in the **BUILD UP Skills advisor-app**



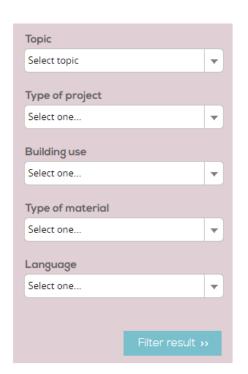


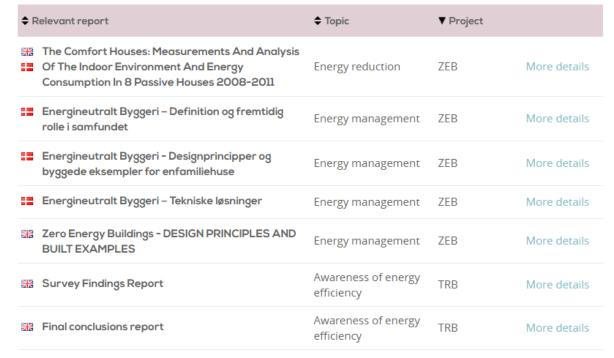
OTHER APPLICATIONS OF THE SKILLS MAPPING RESULTS

PROF/TRAC Database – keyword structure

Profession	Code	Topic(T)	Subtopic	Code	Type of project	Code	Building use	Code	Type of the material	Code	Language	Code
Architect	P1	Energy management		EM	New construction	E1	Office buildings	B1	PPT	M1	Danish	L1
Engineer	P2		Smart grid systems	EM1	Renovation	E2	Apartment houses	B2	Lecture notes	M2	Dutch	L2
Project manager	P3		Domotic systems	EM2			Single-family houses	ВЗ	Reports/publications	МЗ	English	L3
Project developer	P4		Building management systems	ЕМЗ			Educational building	B4	Video tutorials	M4	French	L4
Building manager	P5	Energy production		EP			Other	B5	Workshops	M5	German	L5
Building owner	P6		Geothermal energy	EP1			Hospitals	В6	Guidelines/Toolkits	M6	Italian	L6
Financial manager	P7		Biomass	EP2			Wholesale and retai	IB7	Software	M7	Spanish	L7
Procurer	P8		Biogass	EP3			Sport facilities	B8	Case studies	M8	Bulgarian	L8
PROF-TRAC trainer	P9		District heating and cooling	EP4					Databases/resources		Croatian	L9
			Heatpumps	EP5					MOOCs	M10	Czech	L10
			Solar power systems for									
			electricity generation	EP6							Estonian	L11
			Solar thermal systems for									
			cooling generation	EP7							Finnish	L12
			Solar thermal systems for domestic hot water and/or									
			heating generation)	EP8							German	L13
			Mini wind power	EP9							Greek	L14
			Combined Heat and Power (CHP)	EP10							Hungarian	L15
		Energy reduction	(0)	ER							Irish	L16
		3,	Insulation	ER1							Latvian	L17
			Air tightness building	ER2							Lithuanian	L18
			Micro climates	ER3							Maltese	L19
			Envelope systems	ER4							Polish	L20
			Hot water systems	ER5							Portuguese	L21
			Window and/or glazing systems	ER6							Romanian	122
			Heating and cooling emission	LINO							Komanan	-22
			systems	ER7							Serbian	L23
			Electric heating systems	ER8							Slovak	L24
			Artificial lighting systems	ER9							Slovenian	L25
			Ventilation systems	ER10							Spanish	L26
		Interdisciplinary skill:	s	IS							Swedish	L27

PROF/TRAC Database - Online


http://proftrac.eu/training-materials.html

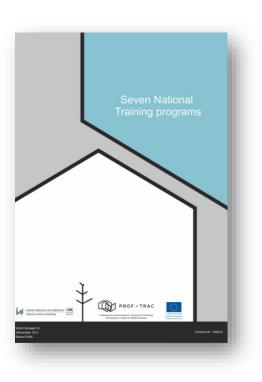

PROF./TRAC PROF/TRAC TRANSPORT TRANS

TRAINING MATERIAL REPOSITORY

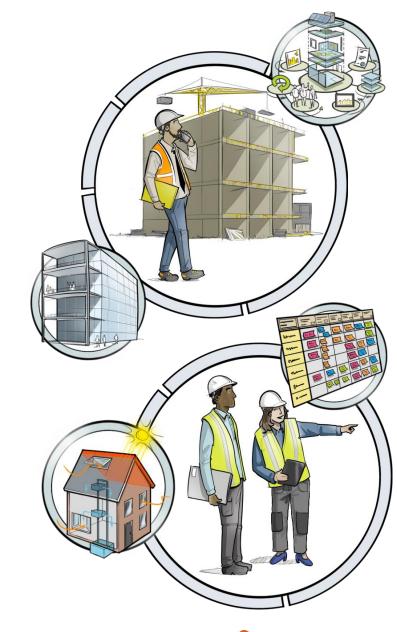
On this page you can find all relevant training materials on NZEB. Use the filter form on the left to narrow the results.

USAGE OF THE SKILLS MAPPING IN:

PROF/TRAC Train the Trainer sessions


OUTCOMES:

PROF/TRAC Seven national training programs
Denmark, The Netherlands, Spain, Italy, Czech Republic, Slovenia and Croatia



Lessons learned & Discussion

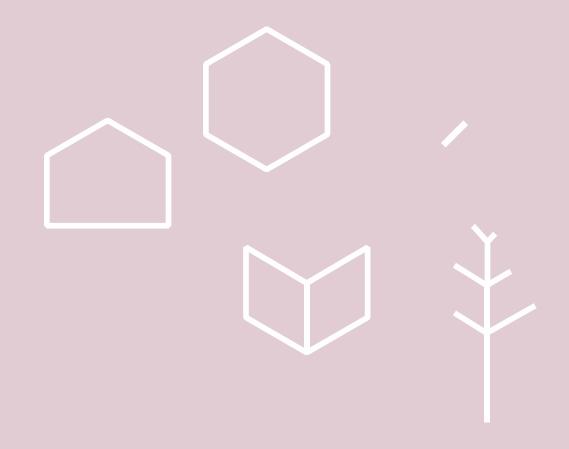
- Crystal clear definitions of the professions involved are needed
 - Depending on the country the same profession can have different roles and tasks (even if it is a regulated profession)
- Work with groups of professions in fields of work or workfields
 - Such as architecture, construction and mechanical engineering.
- The definition of skill levels happens to be vital
 - ► Usage of the right EU-terms according to the Bologna declaration (2010) as a foundation

Lessons learned & Discussion

- Accessibility of data on professional registrations
 - None of the countries involved has a registration system for all professions involved in nZEB, except for architects
- The level of present skills is difficult to assess correctly
 - ► It depends on the expertise and objectivity of the experts, who undertake the mapping. Our recommendation is to:
 - ► Train experts more intensively before conducting a skills mapping in the future
 - ► Make use of better digital survey tools, instead of Excel

COLOFON

<u>www.proftrac.eu</u>



This project has received funding from the European Union's h2020 framework programme for research and innovation under grant agreement no 649473

The information in this publication does not necessarily represent the view of the European Commission.

© PROF / TRAC

All rights reserved. Any duplication or use of objects such as diagrams in other electronic or printed publications is not permitted without the author's agreement.

Thank you for your attention

j.cromwijk@isso.nl