Residential electricity tariffs in Europe: current situation, evolution and impact on residential flexibility.

Youseff Oualmakran LABORALEC

Content

1. Introduction	 Drivers for electricity tariff evolution

5. Challenges and conclusions

2. Components of residential electricity bills

4. Examples of tariff for residential demand response

The energy system trend

Electricity Market

Components of the residential electricity bill

		•				•		
	Min	Max	Min	Max	Min	Max	Min	Max
Percentage %	13	82	3	55	0	46	5	21
Country	Denmark	Malta	Croatia	Portugal	Bulgaria	Denmark	U.K	Hungary

VAT

The Electricity Bill explained

Component Type of rates included		Specific costs included		
Energy	 Fixed rate (€/year) Variable rate (€/kWh) with possibility to have ToU tariffs 	 Cost of energy Cost for balancing and ancillary services Commercialization Other related to energy 		
Distribution and transport	 Fixed rate (€/year) Power rate (€/kW*year) Variable rate (€/kWh) without possibility to have ToU tariffs 	 Cost of transmission Cost of distribution Cost of metering Other related to transport 		
System charges	 Fixed rate (€/year) Variable rate (€/kWh) without possibility to have ToU tariffs 	 Cost of incentives for renewables and others R&D Authority and regulators costs Other common costs 		
Taxes	 Fixed rate (€/year) Variable rate (€/kWh) 	VATOtherTaxes		

Tariff components and options for tariff design

	1. Tariff categories	2. Billing components	3. Time	4. Location	
ions	1.Consumer, Generation and Prosumer tariff	 Two-fold charge: Energy + Capacity charge (€/kWh and (€/kW)) 	1. Real-Time- Pricing (RTP)	1. Nodal pricing	$\xrightarrow{\longrightarrow} Rei \\ \leftarrow \leftarrow Inc$
onent Opti	2.Consumer and Generation tariff	2. Capacity charge (€/kW)	2. Time-of-Use (TOU)	2. Zonal pricing	ducingCost-c reasingCom
ompo	3. Consumer and Prosumer tariff	 Energy charge (€/kWh) 			ausati plexity
S	4. Solely Consumer tariff	4. Yearly charge (€/year)	3. Flat rate (time independent)	3. Uniform pricing (location independent)	on→→

Drivers for electricity tariff evolution

Drivers for electricity tariff evolution

Energy Mix

Evolution of the grid

Regulatory changes

Smart meter roll out

Societal changes

Positive impact for the grid

Lower needs for balancing services

Energy mix

- Flexible generation (i.e. gas)
- High penetration of storage
- Good combination of PV/wind incl. smart inverters

Demand response

- Demand response for households appliances
- Balancing Smart charging for cars

Billing

- Volumetric consumption ToU
- Incentive for self-consumption (e.g. FiT < retail tariff)

Interconnections

- Better electrical interconnections with the outside Regulatory
- Higher proportion for the consumed volumetric component compared to capacity

Negative impact for the grid

Higher needs for balancing services

Energy mix

- High penetration of PV and wind
- Decommissioning of power plants

Billing

• No Time of use

Regulatory

- No deployment of smart meters
- Net metering for PV

Positive impact for the grid

Lower needs for balancing services

Energy mix

- Flexible generation (i.e. gas)
- High penetration of storage
- Good combination of PV/wind incl. smart inverters

Demand response

- Demand response for households appliances
 - Smart charging for cars

Billing

- Volumetric consumption ToU
- Incentive for self-consumption (e.g. FiT < retail tariff)

Interconnections

Better electrical interconnections

Negative impact for the grid

Higher needs for balancing services

Energy mix

- High penetration of PV and wind
- Decommissioning of power plants

Billing

No Time of use

Regulatory

- No deployment of smart meters
- Net metering for PV

Balancing

Positive impact for the grid

Lower needs for congestion services

Energy mix

• More widespread generation (distributed generation)

Regulatory

Congestion

- Simplification to change contractual power
- Billing based on actual power vs contractual power
- Congestion markets

Societal changes

- Energy efficiency (e.g. LED, more energy efficient fridges, etc).
- Storage

Negative impact for the grid

Higher needs for congestion services

Energy mix

 Large deployment of PV (congestion because of overproduction and possibly overvoltage)

Societal change

 Increase in electrification of heating (electrical heating + heat pumps) and transport (electric cars and 2wheelers) with no smart charging/use

	Positive impact for the grid	Negative impact for the grid			
	Lower needs for congestion services	Higher needs for congestion services			
	Energy mix	Energy mix			
	 More widespread generation (distributed generation) 	 Large deployment of PV (congestion because of overproduction and possibly overvoltage) 			
Regulatory					
Congestion	Billing based on actual power vs contractual power	Societal change			
	Congestion markets	Increase in electrification of heating (electrical heating			
	Societal changes	 + heat pumps) and transport (electric cars and 2- wheelers) with no smart charging/use 			
	• Energy efficiency (e.g. LED, more energy efficient fridges, etc)				
	Storage				

Possible time-based pricing options for DER

Pricing to promote residential DR

- Permanent signals reflecting variations in price related to time, location, size, and direction are mostly used for higher costs categories, such as those related to generation and transmission constraints.
- Transient signals can be used to reflect variations in distribution costs. Thus, if a zone is congested during only some hours of the year, non-permanent punctual signals such as CPP can be used in that zone
- Time-based and dynamic pricing can furthermore be obligatory or voluntary, with and without opt-in or opt-out methods

Tariff option		Tools						
	In-home pricing Real-time-metering (Smart display metering)		Access to baseline consumption curve	In-home demand control				
Direct Load Control	Optional	Required	Not required	Required				
Real-Time-Pricing	Required	Required	Not required	Optional				
Critical-Peak-Pricing	Required	Required	Optional	Optional				
Peak-Time-Rebates	Required	Required	Required	Optional				
Time-of-Use pricing	Optional		Not required	Optional				

Examples of tariffs for residential DR

France, a combination of CPP and TOU pricing is applicable for customers that apply for the **Tempo Tariff**

- 22 red days from November 1st till March 31st from Monday to Friday (Saturdays, on Sundays and holidays are never red and he can have no more than 5 consecutive red days there),
- 43 white days that are spread over the year mainly between October and May except on Sundays
- 300 blue days all the rest of the year (every Sunday is blue).

Signed Power (kVa)	Annual subscription TTC (€)	Blue HC	Blue HP	White HC	White HP	Red HC	Red HP
		For 1 kWh (€ TTC)					
9	131.33	0.0967	0.1147	0.1336	0.1585	0.2402	0.6207
12	210.34	0.0967	0.1147	0.1336	0.1585	0.2402	0.6207
15	243.46	0.0967	0.1147	0.1336	0.1585	0.2402	0.6207
18	267.10	0.0967	0.1147	0.1336	0.1585	0.2402	0.6207
30	667.74	0.0967	0.1147	0.1336	0.1585	0.2402	0.6207
36	819.60	0.0967	0.1147	0.1336	0.1585	0.2402	0.6207

Examples of tariffs for residential DR

Sweden tested a tariff for network congestions. The clients receive a demand-based time-of-use electricity distribution tariff.

The demand-based tariff consists of the fixed access charge (SEK/yr.) and a variable distribution charge (SEK/kW) that is calculated based on the average of the five highest hourly meter readings during peak hours. In off-peak hours, electricity distribution is free of charge.

Resulting in:

- Peak demand reduction between 7.5% and 9.3% .
- The total shift from peak to off-peak hours was between 2.4 and 0.2 h
- Individual households saw a decrease from 14% to 41% in costs

Examples of tariffs for residential DR

The Netherlands tested dynamic retail, distribution, and local production pricing for household consumers.

The retail tariff is based on the day-ahead price resulting in a retail price fluctuating between 0.06 €/kWh and 0.36 €/kWh each day

Challenges for the evolution of DR tariffs

Initial technology investments

- Installation of smart meters, in-home displays, and other devices for enabling DR is costly
- Without any clear business model for investments, no actor will make the first move

Coordination problems

• Actors involved in electricity supply could require the demand to be adjusted downward, while others could actually require upward demand adjustments.

Flexibility and traditional markets

- New rules for balancing, ancillary, and real-time trading should be adjusted to accommodate aggregated load flexibility.
- Need for a compensation mechanism that guarantees that electricity suppliers are not penalized for imbalances caused by activities of (independent) aggregators

Side-effects of DR: shifting peaks and increasing emissions

• A relevant issue with DR tariff schemes is that instead of peak reduction and valley filling, a shifted peak is frequently observed.

Conclusions

- Currently no urgency for demand response from the residential sector due to overcapacity in the distribution grid and therefore the evolution of promoting tariffs is moving slow
- In a liberalized electricity sector, taxes, network charges, and retail charges are separately defined and this affect price clarity for the end-user
- New rules for balancing, ancillary, and real-time trading should be adjusted to accommodate aggregated load flexibility.
- Clear business models for residential flexibility

Thank you

youssef.oualmakran@external.laborelec.com