ANALYSIS OF HEAT TRANSFER FOR BIPV/T MODELS

Anthony Rey, Efstratios Rounis, and Andreas K. Athienitis

Centre for Zero Energy Building Studies

June 27, 2018
OUTLINE OF THE PRESENTATION

Background

Modelling

Case study

Analysis

Conclusion and future work
Solar energy technologies

Photovoltaic (PV) system

Electricity

PV/T system

Electricity & Heat

Thermal (T) collectors

Heat
BIPV/T systems

PV layer

Air channel

Insulated back surface

- Electricity and heat production
- Active cooling of PV modules
- Integration with the building envelope
- Replacement of common building materials
- Aesthetically pleasing look

(Noguchi et al., 2008)
EcoTerra house

- 2.84 kW (electricity) BIPV/T system
- 4 cm air channel of 6.2 m length
- Air temperature rise up to 40°C
JSMB (John Molson School of Business) building

- 300 m² BIPV/T system with 70% covered with PV panels
- 25 kW electricity (20 MWh annually)
- 75 kWth heat for preheating fresh air (55 MWh annually)
Applications

(Yang & Athienitis, 2016)
Growing research interest in BIPV/T systems
Performance prediction with BPS programs

(Nguyen et al., 2014)
MODELING

Thermal network

Energy balance

- Top losses
 - Wind-driven/natural convection
 - Radiation to the surroundings
- Electrical production
- Heat recovery
 - Top channel surface
 - Bottom channel surface
- Back losses
MODELING

TRNSYS/TESS

(Kamel & Fung, 2014)
Type 566: glazed BIPV/T system

Key features

- Temperature uniformity
- Negligible edge heat losses
- Same top and bottom channel convective heat transfer coefficients
- Average Nusselt numbers

(Klein et al., 2018)
MODELING

WARNING

- Circular pipe \(L \equiv D \quad D_h = 4 (\pi D^2 / 4) / \pi D = D \)
- Rectangular duct \(L \equiv D_h = 4A_c / p = 4WH / (2W + 2H) \)

- Circular pipe \(Re = \frac{\rho \bar{v} D_h}{\mu} = \frac{4\rho \bar{v} A_c}{\mu p} = \frac{4\dot{m}_{avg}}{\pi \mu D} \)
- Rectangular duct \(Re = \frac{\rho \bar{v} D_h}{\mu} = \frac{4\rho \bar{v} A_c}{\mu p} = \frac{2\dot{m}_{avg}}{\mu (W + H)} \)

\[\text{Re} = \frac{2\dot{m}_{avg}}{\mu} \left(\frac{W + H}{\pi WH} \right) \]

\(diameter = 4.*\text{width}*\text{thick_channel} / (2.*\text{width} + 2.*\text{thick_channel}) \)

! Calculate the Reynolds number
Reynolds = 4.*\text{flow_in/pi/diameter}/\text{visc_air}
BIPV/T experimental set-up (Yang & Athienitis, 2014)

- Small scale version of the BIPV/T roof system in the EcoTerra house
- Amorphous PV module with an electrical efficiency of about 6%
- 5.1 cm of polystyrene insulation 1.76 (K·m²)/W
BIPV/T experimental set-up (Yang & Athienitis, 2014)

<table>
<thead>
<tr>
<th>Information</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel height</td>
<td>0.04 m</td>
<td></td>
</tr>
<tr>
<td>Channel width</td>
<td>0.38 m</td>
<td></td>
</tr>
<tr>
<td>Channel length</td>
<td>2.89 m</td>
<td></td>
</tr>
<tr>
<td>Reference electrical efficiency</td>
<td>0.06</td>
<td>-</td>
</tr>
<tr>
<td>Average air speed</td>
<td>1.48 m/s</td>
<td></td>
</tr>
<tr>
<td>Average wind speed</td>
<td>1.6 m/s</td>
<td></td>
</tr>
<tr>
<td>Total solar irradiation</td>
<td>1,080 W/m²</td>
<td></td>
</tr>
<tr>
<td>Surroundings temperature</td>
<td>20 °C</td>
<td></td>
</tr>
<tr>
<td>Sky temperature</td>
<td>11 °C</td>
<td></td>
</tr>
</tbody>
</table>
Experimental results (Yang & Athienitis, 2014)
\[
\dot{Q}_{rec} = \dot{Q}_{top} + \dot{Q}_{btm}
\]
\[
\dot{Q}_{btm} = \dot{Q}_{rad} + \dot{Q}_{back}
\]

<table>
<thead>
<tr>
<th>Energy balance</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{pv}</td>
<td>5.5%</td>
</tr>
<tr>
<td>$\dot{Q}_{rad,sky}$</td>
<td>13.6%</td>
</tr>
<tr>
<td>$\dot{Q}_{conv,surr}$</td>
<td>54.9%</td>
</tr>
<tr>
<td>$\dot{Q}_{conv,top}$</td>
<td>24.5%</td>
</tr>
<tr>
<td>$\dot{Q}_{conv,btn}$</td>
<td>1.5%</td>
</tr>
<tr>
<td>\dot{Q}_{rad}</td>
<td>1.5%</td>
</tr>
<tr>
<td>\dot{Q}_{rec}</td>
<td>26.0%</td>
</tr>
<tr>
<td>\dot{Q}_{back}</td>
<td>0%</td>
</tr>
</tbody>
</table>
Local convective heat transfer coefficients

\[\text{Le} \approx 1.6Dh \text{Re}^{\frac{1}{4}} \]
\[\text{Le} \approx 1.07 \text{ m} \]

\[\text{Nu}_{\text{top}}(x) = 8.188 \text{Re}^{0.77} \text{Pr}^{3.85} e^{-x^{0.2}/(2.8Dh)} + 0.061 \text{Re}^{0.77} \text{Pr}^{3.85} \]

\[\text{Nu}_{\text{btm}}(x) = 4.02 \text{Re}^{1.09} \text{Pr}^{19.3} e^{-x^{0.2}/(14Dh)} + 0.005 \text{Re}^{1.09} \text{Pr}^{19.3} \]
TRNSYS Type 566

- Same average top and bottom channel convective heat transfer coefficients

 \[
 \overline{Nu} = 3.66 \quad \text{Laminar flow} \quad 2300 \geq Re
 \]

 \[
 \overline{Nu} = 0.023Re^{0.8}Pr^n \quad \text{Turbulent flow} \quad 2300 < Re
 \]

 \[
 n = 0.4 \text{ for heating (} T < T_s \text{)}
 \]

- Suggested relationship for wind-driven/natural convection (average value)

 \[
 \overline{h}_{\text{conv,surr}} = 5.7 + 3.8\overline{v}_{\text{wind}}
 \]
Experimental validation: Type 566 (modified)
Experimental validation: Type 566 (original)
Previous research studies

![Graph showing heat transfer coefficient vs. distance from inlet]

- $h_{\text{top, cand}}$
- $h_{\text{btm, hegazy}}$
- $h_{\text{btm, yang}}$
- h_{trnsys}
- $\bar{h}_{\text{top, cand}}$
- $\bar{h}_{\text{btm, yang}}$
- $\bar{h}_{\text{btm, hegazy}}$
Experimental validation: Type 566 (original+advice)
MONTHLY RESULTS

- **TRNSYS BIPV/T electrical production**
- **BIPV/T electrical production**
- **TRNSYS BIPV/T heat recovered**
- **BIPV/T heat recovered**

Electricity production [kWh]

- January: 10
- February: 8
- March: 12
- April: 10
- May: 12
- June: 15
- July: 20
- August: 30
- September: 25
- October: 20
- November: 15
- December: 10

Thermal recovery [kWh]

- January: 5
- February: 7
- March: 10
- April: 8
- May: 10
- June: 12
- July: 15
- August: 20
- September: 16
- October: 12
- November: 10
- December: 7
ANALYSIS

Discussion

Key features (previous studies)

- Length [m]: 2.8 (median) and 3.2 (average)

- Hydraulic diameter [m]: 0.15 (median) and 0.18 (average)

- Average air speed [m/s]:
 - Min: 0.42 (median) and 0.38 (average)
 - Max: 1.7 (median) and 1.5 (average)

- Revised average Nusselt number:
 \[Nu = Nu_{\infty} (1 + SDh/L) \]
 \[S = 14.3 \log(L/Dh) - 7.9 \]

 (Tan & Charters., 1969)

<table>
<thead>
<tr>
<th>Information</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel length</td>
<td>2.89</td>
<td>m</td>
</tr>
<tr>
<td>Hydraulic diameter</td>
<td>0.073</td>
<td>m</td>
</tr>
<tr>
<td>Average air speed</td>
<td>1.48</td>
<td>m/s</td>
</tr>
</tbody>
</table>

- Area: 100 m²
- Width: 6m
- Tilt: 40°
- Roof length: ~ 3.9m
CONCLUSION AND FUTURE WORK

• BIPV/T systems are promising for reducing energy consumption

• BIPV/T models are relatively accurate, but further analyses in terms of heat transfer are required

• Dimensionless correlations for convective heat transfer coefficients are needed (BIPV/T-oriented)
Thank you for listening!

Any questions?
REFERENCES