

Generating models for Model Predictive Control in buildings

Clément Fauvel¹, Suzanne Lesecq¹, Kritchai Witheephanich², Alan McGibney² and Susan Rea² ¹CEA, ²CIT

clement.fauvel@cea.fr

This work is supported by TOPAs H2020 project, GA nb 676760 (<u>https://www.topas-eeb.eu/</u>).

Context

 40% of energy consumed by buildings worldwide

Focus on new strategies for

- Energy conservation
- Energy savings
- One of TOPAs objectives: advanced control techniques
 - Ventilation

TOPAS

Heating

→ Energy savings
 → Take into account "user comfort", at least bounds on Temp. & CO2

This work is supported by TOPAs H2020 project, GA nb 676760 (https://www.topas-eeb.eu/).

TOPAs advanced control objective

MPC => Model-based control approach

- Develop a generic modelling framework
- Deploy, Test and Validate
 - Post-grad room in NIMBUS
 - Improve thermal comfort and air quality
 - Energy savings

- Post-grad room : open office in NIMBUS building
 - CIT Campus, Cork, Ireland
 - Climate zone : temperate maritime (mild winter, cool summer, regular rains)

- 1. Context and objectives
 - a. Context
 - b. <u>Object</u>ive

2. Problem statement

- a. MPC basics
- b. Problem definition
- c. Modelling types
- 3. Generating models for MPC
 - a. Acquiring data for modelling
 - i. General system description
 - ii. Capturing zone behavior
 - b. Modelling and identification
 - i. Model structure
 - ii. Parameter optimization problem
 - iii. Validation process
- 4. Application
 - a. Distributive Model Predictive Control for thermal comfort
 - b. TOPAs control architecture
 - c. Results

Model Predictive Control philosophy

- Model-based strategy (*state-space*, transfer function)
- Receding horizon to *predict future behavior*
- Compute optimal control sequence

Why MPC for building ?

- Coordinate multiple inputs / outputs systems
- Economic vs performance tradeoff
- Constraint handling

Rely on a (sampled) dynamic model

- Considering a multiple zones building
 - Coupling between zones
 - Controlled ventilation and heating
 - Outdoor conditions

- How to generate a numerical model (≠ simulation model)
 - Suitable for MPC control design
 - Accurate

Definition:

<u>model</u> = a mathematical representation of a system, which describes the relationships between an entrie *u* and an output *y* subject to exogenous signals *w*

• State of arts:

	<u>White box</u>	<u>Grey box</u> ¹	Black box
Modelling principle	Physical	Behaviour	Identification
Source of knowledge	LoN	A, LoN, DC	DC
Advantage	Physical meaning	Easy to extend	Hand on the model structure
Disadvantage	- Expertise in the domain - Complex	- Difficult to calibrate	- Sensitivity to data quality

LoN: Law of Nature; A: Analogy; DC: Data Collection ¹ : [SP 2017, IFAC-2017]

- 1. Context and objectives
 - a. Context
 - b. Objective
- 2. Problem statement
 - a. MPC basics
 - b. Problem definition
 - c. Modelling types

- 4. Application
 - a. Distributive Model Predictive Control for thermal comfort
 - b. TOPAs control architecture
 - c. Results

Find a proper description that:

- Defines the *input & output* variables
- Is common to any zone

• Four types of variable

Regulated	Boundarie	es	Exogenous	Control
T_{z_i} : Temperature (°C)	North face:	T _{bn} , c _{bn}	<i>occ_{tot}</i> : total occupancy	u_{win}: air flow / window position
<i>c_{zi}</i> : CO ₂ (ppm)	East face:	T_{be} , c_{be}	Q_{solar} : heat input	(%)
	South face:	T _{bs} ,c _{bs}	generated by solar	u _{pwr} : heating power (W)
	West face:	T_{bw}, c_{bw}	radiation (W)	
	Ceiling:	T_{bc} , c_{bc}		
	Floor:	T _{bf} , c _{bf}		

Main idea: Stimulate the system along its whole frequency spectrum

Ð.

Challenging because of:

- Highly coupled interactions
- Occupancy & weather conditions

Three types of data set

- Working day;
- Weekend day;
- Experiments day: PRBS or scenarios on the manipulated variables

Training data = a weighted sum of the three types

- 1. Context and objectives
 - a. Context
 - b. Objective
- 2. Problem statement
 - a. MPC basics
 - b. Problem definition
 - c. Modelling types

- 4. Application
 - a. Distributive Model Predictive Control for thermal comfort
 - b. TOPAs control architecture
 - c. Results

The model structure is **defined by the designer**

We propose the Brunowski state-space form

- Naturally sparse => ease the process of identification
- State matrices => cope with early MPC algorithms
- Partitioned matrix => ready for *distributive / decentralized* application

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\ 0 & 0 & 0 & 0 & 1 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & a_{36} \end{bmatrix}, \qquad B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \\ b_{41} & b_{42} \\ b_{51} & b_{52} \\ b_{61} & b_{62} \end{bmatrix}$$

 n_i : design parameters a_{ij} , b_{ij} : model parameters => **to identify**

Find the model parameters by solving an optimization problem

- Denote $z_t = [T_{z_i}, c_{z_i}], \quad u_t = [u_{win}, u_{pwr}], \quad \theta = [a_{ij}, b_{ij}, x_0 \in \mathbb{R}^{n_x}, \beta \in \mathbb{R}^{n_y}]$ (Vector of parameters to identify)
- Cost function

$$F(\boldsymbol{\theta}) = \sum_{t=1}^{N} [y_t(\boldsymbol{\theta}) - z_t]^2$$

Optimisation problem

$$\theta^* = \arg \min_{\Theta \in D} F(\theta)$$

$$\begin{cases} x_{t+1} = A(\theta)x_t + B(\theta)u_t, & x_0(\theta) & Parametrized model \\ y_t = Cx_t + Du_t + \beta(\theta) & (Governing equation) \end{cases}$$

Find the model parameters by resolving an optimization problem

Identification & Modelling Tool:

- Includes natural robustness to model uncertainties
- Deals with Brunowski form.
- Allow static gains constraints.

How to **validate** the model for MPC purpose?

Model Predictive Control philosophy

• <u>Idea:</u> compute at sample k the relative error on receding horizon N_p

$$\epsilon_p(k) = \sum_{k=t}^{t+N_p} \left\| \frac{y_t(k) - z_t(k)}{z_t(k)} \right\|^2$$

Validation process

- For a defined N_p analyse the results
 - Measure occurrence
 - Fix a tolerance γ

 $occ(\epsilon_p)$

- Example with 432 sampling (3 days)
 - ($\gamma=350,\,\epsilon_{max}=15\%$)
 - Thermal model validated for $N_p \leq 5$
 - CO2 model validated for $N_p \leq 2$

- 1. Context and objectives
 - a. Context
 - b. Objective
- 2. Problem statement
 - a. MPC basics
 - b. Problem definition
 - c. Modelling types

Generating models for Model Predictive Control in buildings

- 3. Generating models for MPC
 - a. Acquiring data for modelling
 - i. General system description
 - ii. Capturing zone behavior

b. Modelling and identification

- i. Model structure
- ii. Parameter optimization problem
- iii. Validation process

Distributive Model Predictive Control

TOPAs control architecture

Scenarios

- Two consecutive days
- Similar occupancy and solar irradiation profile
- Winter conditions

•
$$T_{ref} = 22^{\circ}C$$

Outcome

- Lower use of heater (energy saving)
- Enhance thermal comfort

Scenarios

- Two consecutive & similar days
- $T_{ref} = 22^{\circ}C$
- Spring conditions

Outcome

Enhance thermal comfort

Windows Control Values in Postgrad Area

The presented modelling approach

- Deals with multizone building and is extensible to new zones
- Copes with MPC controller design
- Is validated on receding horizons

Successfully applied to TOPAs demonstration site

- Allowed to reduce (heat) energy consumption
- Handled comfort constraints

Future work will concentrate on:

- Pursue execution until end-of-project
- **Replicate** the modelling on a second demo-site
- Adaptive algorithm to re-identify model according to seasonal changes

Thank you

https://www.topas-eeb.eu

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 676760.

Outline

