EU Geographical Islands as Leaders of Green Energy Transition

Giorgio Bonvicini, **RINA**

Workshop Agenda

Time	Presentation Title	Speaker
09.00-09.10	Welcome and introduction	
09.10-09.30	EU Geographical Islands as Leaders of Green Energy Transition	Giorgio Bonvicini (RINA)
09.30-09.50	NESOI – Capacity Building and Funding Solutions to Replicate	Luigi Laterza (SINLOC) and Cécile
	Islands' Decarbonization Projects	Barrere (R2M)
09.50-10.10	INSULAE – Designing energy strategies to assist island decision-	Bruno Sodiro (RINA)
	makers	
10.10-10.30	IANOS – Innovative Solutions to Decarbonize Geographical Islands	Eduardo Rodrigues (EDP NEW)
10.30-11.00	Coffee break	All
11.00-11.20	RE-EMPOWERED – Kythnos island: a living lab for innovative	Petros Markopoulos (DAFNI
	integrated interventions	Network of Sustainable Greek
		Islands)
11.20-11.40	MAESHA – Demonstration of smart and flexible solutions for a	Juan Varo Lopez (CREARA)
	decarbonized energy future in Mayotte and other European islands	
11.40-12.00	REACT – Small islands and their path towards green energy	Fausto Sainz Salces (COMET Global
	independence	Innovation)
12.00-12.30	Wrap-up, discussion and conclusions	Giorgio Bonvicini (RINA)

Islands' Decarbonization

The European Commission is taking actions to make islands leaders of the EU energy transition and decarbonization, due to their specific features

high RES potential

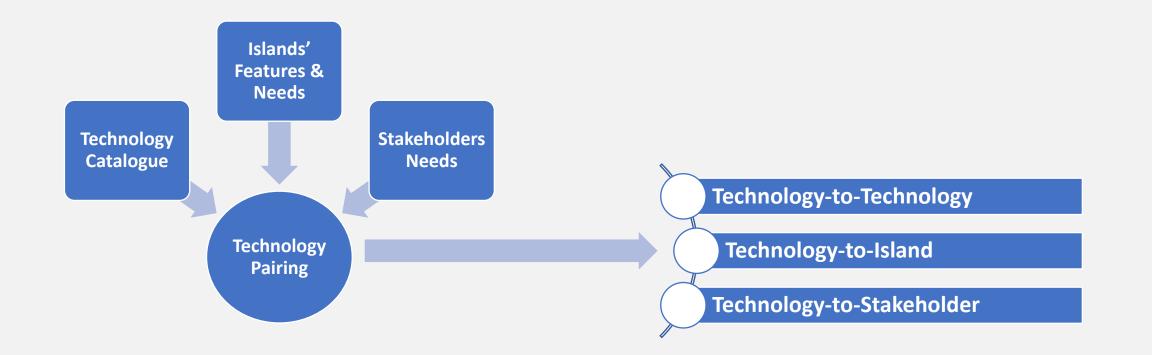
strong sense of community

high energy prices, thus cost-effective solutions

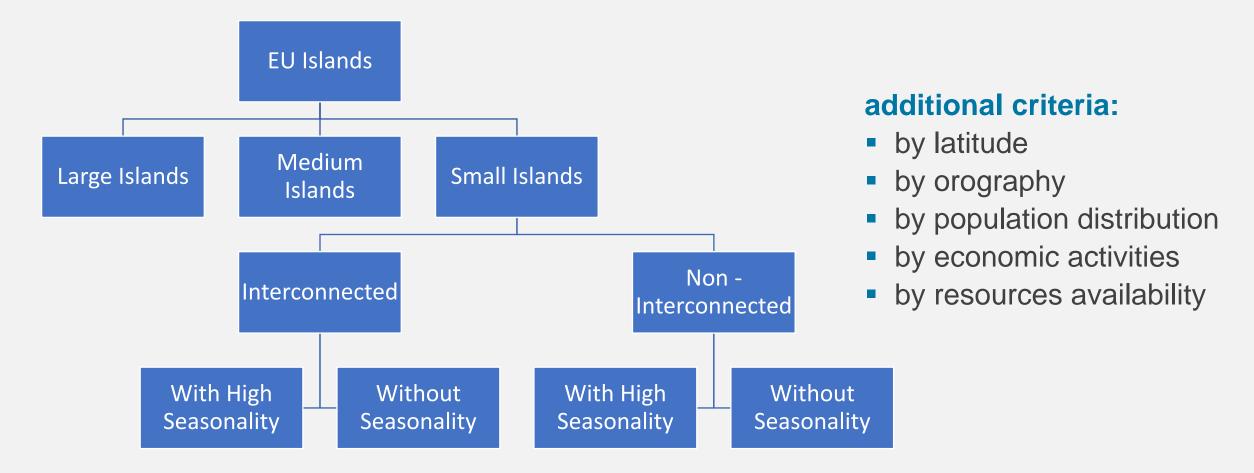
methodologies available

isolated energy systems

seasonality due to tourism


difficult access to finance and high investment risks

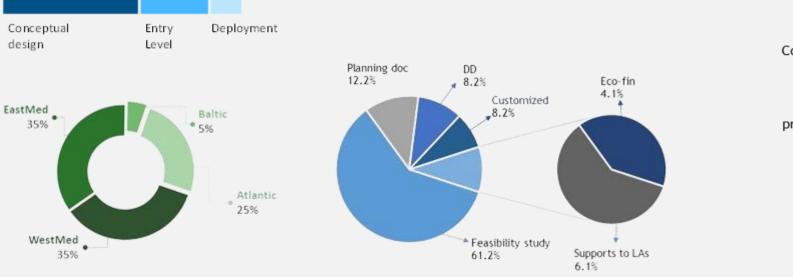
lack of local expertise

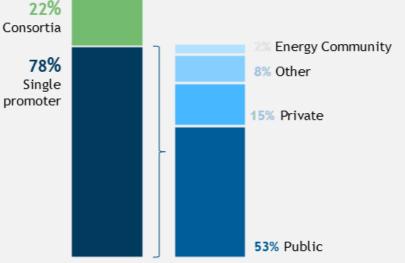

No standard solution exists for islands' decarbonization, but many technologies are available

Islands' Clusterization

To evaluate applicability of different technology solutions to various types of islands

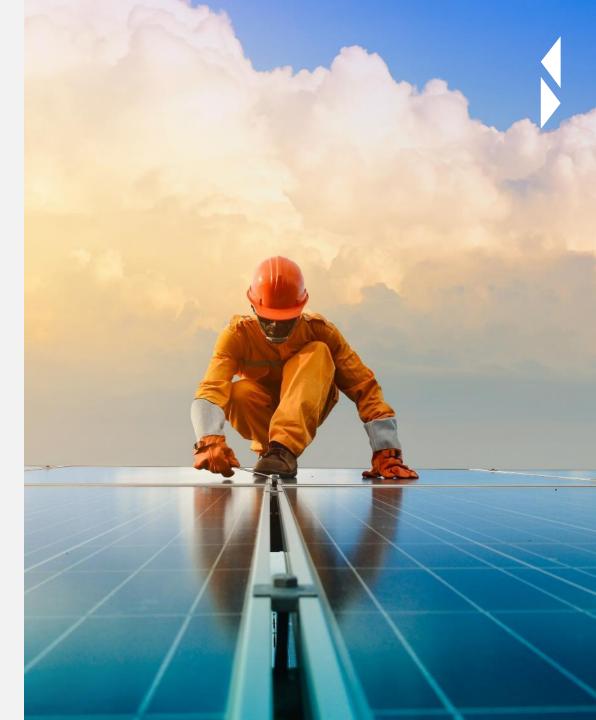

NESOI – 168 Applications




168 applications received in two NESOI open calls: a representative sample of potential pathways to islands' decarbonization

60%

30%


NESOI – 54 Selected Projects

Technology Clusterization

Six clusters of technologies

- Electricity production from renewables
 - solar, wind, biomass, geothermal, hydro, wave/tidal
- Thermal production from renewables
 - solar thermal, biomass, geothermal, cogeneration & trigeneration
- Electric mobility
 - electric vehicles, boats/ferries and related charging infrastructure
- Energy storage
 - battery storage, pumped hydro storage, power-to-hydrogen, thermal storage
- Upgrade of local public assets
 - grids, public lighting, cold ironing
- Energy efficiency
 - buildings, industrial processes

Technology Integration Analysis

Primary Technology Cluster	Secondary Technology Cluster	Number of Projects
	None	29
	With Thermal Prod. From RES	2
Electricity Production from	With Electric Mobility	72
Renewables	With Energy Storage	14
	With Upgrade of Public Assets	6
	With Energy Efficiency	20
Thermal Production from	None	15
Renewables, including	With Upgrade of Public Assets	2
Cogeneration	With Energy Efficiency	2
	None	11
Floatria Mability	With Electric Prod. From RES	6
Electric Mobility	With Energy Storage	6
	With Upgrade of Public Assets	6
	None	2
Energy Storage	With Electric Prod. From RES	22
	With Upgrade of Public Assets	2
	None	2
Upgrade of Local Public	With Electric Prod. From RES	18
Assets	With Electric Mobility	2
	With Energy Efficiency	2
	None	2
Energy Efficiency	With Electric Prod. From RES	6
	With Upgrade of Public Assets	6

Most frequent couplings:

- RES + e-mobility
- RES + storage
- EE + RES
- Local public assets + RES

Conclusions and Lessons Learnt

- the most suitable island energy transition projects depends on local features \rightarrow tailored **energy planning** plays a key role
- islands are ideal laboratories for solutions to be upscaled on the mainland: H₂
 production, RES+storage, RES+e-mobility, RES+desalination, RES+DHC,
 "green ports" → related to public assets but impacting on citizens & economy
- energy communities have a high potential \rightarrow increased security of supply, mitigation of energy poverty, maximization of RES self-consumption
- not to forget: energy efficiency \rightarrow actions done in the mainland are applicable also to islands, generally with higher environmental, social, economic benefits

Time for Collaboration

We have two surveys for you!

 What are the most relevant barriers to energy transition of islands?

<u>www.menti.com</u> → 5600 6115

 What are the best suitable solutions (technical and non-technical) to unlock islands' potential for decarbonization and energy transition?

<u>www.menti.com</u> → 2634 4773

Discussion will be at the end of the workshop

Thanks for your kind attention

Giorgio Bonvicini - RINA giorgio.bonvicini@rina.org