

Renewable Energy for Self-Sustainable Island Communities

REACT, small islands and their path towards green energy independence

Fausto Sainz (<u>f.sainz@comet.technology</u>) – COMET
Josep Mitats (<u>josep.mitats@veolia.com</u>) – Veolia Serveis Catalunya
Md Nasimul Islam Maruf (<u>md.nasimul.islam.maruf@ise.fraunhofer.de</u>) – Fraunhofer Gesselschaft, Institute for Solar Energy Systems

Islands Energy Transition: Experience in H2020 Projects - Chapter II

REACT – GA 824395

1

G Motivation of the REACT project

Energy cost overrun

High dependency on the mainland energy market
Losses during the transport and distribution of electrical energy (inefficient and costly energy transmission)

Fossil fuel consumption

• Lack of a strong generation/supply infrastructure

- High dependency on the energy import
- High GHG emissions

Variable load profiles

- Significant population fluctuations (tourist and non-tourist season)
- Different market contexts and climate conditions

There is a need to characterize and leverage islands' renewable energy resources (RES) to develop a more sustainable energy model

Islands Energy Transition: Experience in H2020 Projects - Chapter II

Aims and objectives of the REACT project

- REACT (*Renewable Energy for self-sustAinable island CommuniTies*) is a 4-year research project (01/01/2019 31/12/2022) funded by EU's Horizon 2020 programme that aims for island energy independency
- REACT will demonstrate the potential of largescale deployment of RES and storage assets on geographical islands to bring economic benefits, contribute decarbonizing local energy systems and reduce GHG emissions
- REACT will deliver a scalable and adaptable cloud-based ICT platform for planning and management of RES/storage enabled infrastructure, supporting a holistic cooperative energy management strategy at the community level

The Rise of Battery Storage in Power Systems

- Energy storage systems have started to play a very significant role in our electric power systems, and battery is a key element to enable the energy transition.
- A great number of grid-scale battery systems have already been deployed throughout Europe, which contribute to the stabilization of the grid frequency.
- Germany installed 930 MWh home storage systems and 550 MWh large-scale storage systems by the end of 2018. (Ref: Clean Energy Wire)
- The tumbling cost of batteries is set to drive a boom in the installation of energy storage systems around the world (Ref: BloombergNEF)

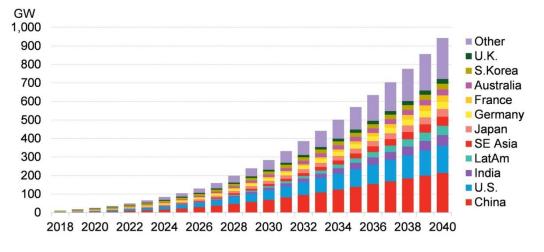


Figure: Global cumulative storage deployments (Source: BloombergNEF)

Energy Storage Technologies

The Energy Trilemma: PV – Battery Perspective

Energy Security:

- 1. Increased self sufficiency (30-40% vs. 60-70%)
- 2. Uninterrupted power supply in times of grid failures
- 3. Increased power system stability (Thanks to fast response and high-power capabilities)

Energy Equity:

- 1. Battery prices have fallen by over 85% since 2010
- 2. Self-consumption enables high private and communal participation (contributing to energy democracy)
- 3. Overall cost reduction, by optimizing grid operation (peak shaving, stress reduction, avoid grid expansion, etc.).

Environmental Sustainability:

- Less Emission: Battery-50 g, PV 30 g, Waste (Biomass)-100 g, Gas firing plant-250 g, Coal Plant-350 g (CO_{2,eq} per kWh).
- 2. Higher flexibility enabling provision of high share of renewables

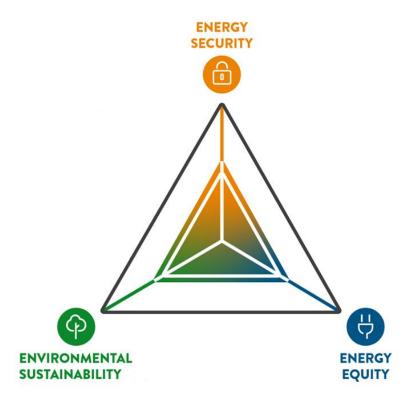


Figure: The Energy Trilemma (Image Adapted from World Energy Council)

a) Following a simple control strategy (greedy self-consumption)

Energy Storage Technologies

The Role of Battery Storage in the REACT Project

- The main innovation relies on the integration of batteries within a central ICT platform (REACT Platform) allowing the batteries take part in demand response in demo sites.
- The battery integration to the REACT platform is based on open-source energy management framework OpenMUC, and on existing product APIs (e.g., MIDAC API), and will provide state-ofthe-art control capabilities
- Forecasting (weather, generation, consumption) information will aid optimized battery scheduling, leading to manifold benefits in terms of cost and resource utilization.

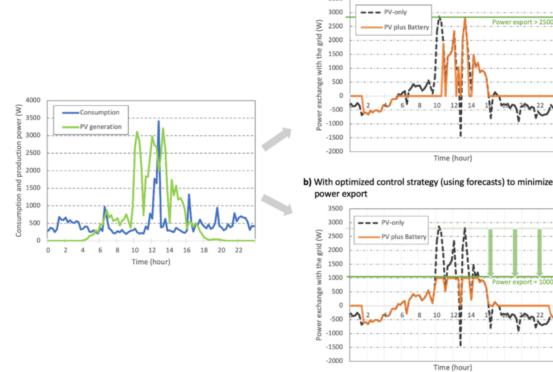


Figure: Supply-Demand Balance. Left: Energy Demand and PV Supply. Right (Upper): Simple Control. Right (Lower): Optimized Control

The Role of Battery Storage in the REACT Project (Contd.)

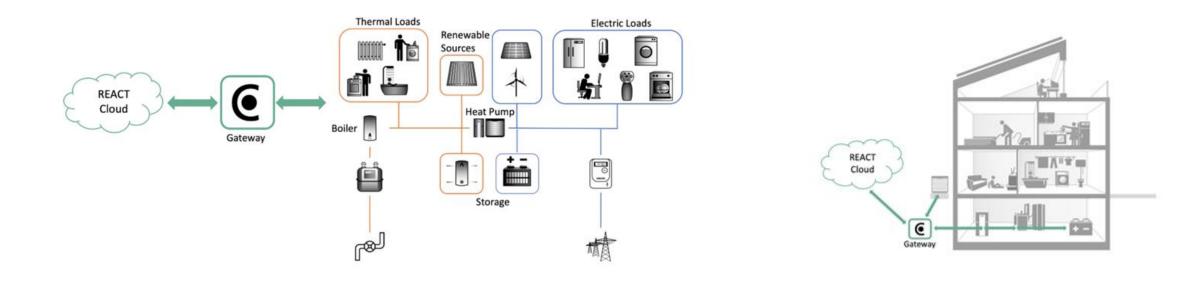


Figure: ICT integration of household equipment to the REACT platform. A communication gateway connected to the internet enables information exchange between the assets and the cloud platform. This platform offers analytic and optimization services to all customers.

Islands Energy Transition: Experience in H2020 Projects - Chapter II

REACT – GA 824395

7

Hydrogen Storage: Market Perspective

- Hydrogen Europe and other European and worldwide agencies involved in the hydrogen markets consider them (and particularly green hydrogen market) as strategic and promising
- Hydrogen is not a primary energy source itself, but a storable and transportable energy vector.
- It has a high energy value per mass unit (energy density) reaching up to 120 MJ/kg, much more than traditional fuels but being much light weighted, with a density of 0.089 kg/m³ at 0 °C and 1 bar (1/10th of CH₄). This allows storing a relevant amount of energy mass within a reasonable volume
- Hydrogen offers a big energy density in terms of mass and a low energy density in terms of volume (up to 10,8 MJ/m³), which means approximately 3 kWh/Nm³

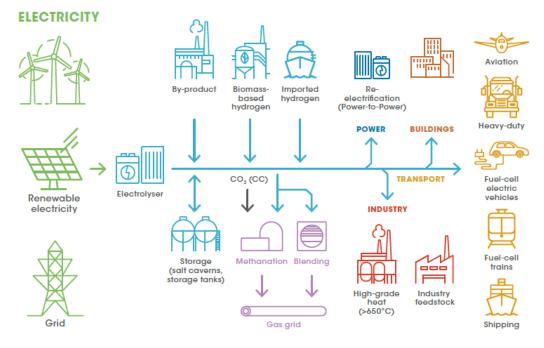


Figure: Concept of P2H₂ and the end-use applications of hydrogen (Source: "Hydrogen from renewable power", International Renewable Energy Agency (IRENA))

The Role of Hydrogen Storage in the REACT Project

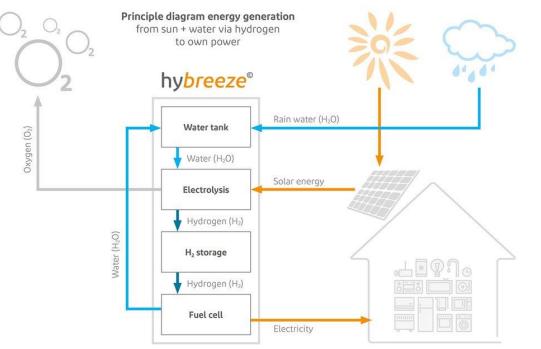


Figure: Principle diagram of a domestic P2H system by Innov Energy. The actual P2H system being deployed within the REACT project follows that principle, focusing on the reelectrification pathway (electricity storage and regeneration)

- As stated in IRENA's report Innovation landscape brief: Renewable Power-to-Hydrogen (2019): "Hydrogen produced with excess solar PV and wind power through water electrolysis can be stored for later use – as a fuel for transport, industry and other sectors. Hydrogen production can be used as a 'smart' load to increase power system flexibility and help to decarbonise the overall economy"
- The P2H system will contribute to the REACT project's innovation goals and objectives as a new integrative and interoperable energy storage asset. Moreover, the P2H system will be customized to keep a complete set of contributions in terms of grid support, power balance and reduce curtailment of excess VRE generation

Power-to-Hydrogen System for the REACT Project

- Contacts with many small-scale P2H system providers/suppliers: Toshiba, GKN Hydrogen, Home Power Solution (HPS), Pure Energy Centre (PEC), Logan Energy and Clean Technology System Hybrid & Hydrogen (CTS H2);
- Chosen supplier after pre-feasibility & technical-economic assessment: CTS H2
 - Features of H2 Home system (featured equipment in the container unit):
 - Hydrogen generator (electrolyser): 2 x AEM providing 1 Nm³/h at 35 bar with STD power supply of 100 240 V_{AC} and 4,8 kW of nominal power consumption (6 kW_p)
 - Hydrogen storage tank: 800 L (28,5 Nm³ of H₂ at 35 bar, approximately 31 kWh of energy storage)
 - Fuel cell unit: 2 x module providing 5 kW_p output power (43,2 57,6 V and 0 94 A @54V), 24 V of input voltage and external temperature between 5 and 45 °C
 - EMS Monitoring and control system: Industrial PLC (Siemens) for monitoring the system and other supported devices/sensors with data collecting and remote control
 - Customization of H2 Home system included (PLC software for reading/writing through OpenMUC's Energy Gateway, rain water collection tank + purification and circulation system, etc.)
 - Transport, installation & commissioning at one of the Irish pilot site's buildings
 - Warranties, O&M tasks and local technician training (maintenance and safety) included

Islands Energy Transition: Experience in H2020 Projects - Chapter II

Figure: 3D perspective of the proposed hydrogen storage system and its components, customized to fit inside a metal container (Source: CTS H2)

Energy Storage Benchmarking

Benchmark Criteria Storage	Lead-carbon	Li-ion (LTO)	Li-ion (NMC)	Vanadium Redox Flow	Sodium-ion	Hydrogen
Communication, integration and interoperability	+++	+++	+++	+	++	+
Technical innovation degree	+	++	+	+++	+++	+++
Technology and market readiness	+++	++	+++	++	++	++
Environmental impact (LCA) and footprint	+	++	++	+++	+++	++
Technical performance	++	+++	+++	++	++	++
Costs	+++	+	++	++	++	++

Benchmark Criteria	Weigh t	Lead-carbon	Li-ion (LTO)	Li-ion (NMC)	Vanadium Redox Flow	Sodium-ion	Hydrogen
Communication, integration and interoperability	3	3	3	3	1	2	1
Technical innovation degree	3	1	2	1	3	3	3
Technology and market readiness	2	3	2	3	2	2	2
Environmental impact (LCA) and footprint	2	1	2	2	3	3	2
Technical performance	1	2	3	3	2	2	2
Costs	1	3	1	2	2	2	2
Sum		25	27	27	26	29	24

Figure: Benchmarking of energy storage technologies being deployed within the REACT project

- Benchmarking shows that Sodium-ion and Lithium-ion batteries (Titanate Oxide and Nickel-Manganese-Cobalt Oxide) are the most suitable options to be deployed at the pilot sites under the main REACT project's aims and objectives
- The REACT project will also deploy a P2H storage solution based on a patented plug-and-play hydrogen generation, storage and power reconversion unit to serve as a test bed for communication & interoperability, integration, grid interaction and other research purposes via on-site demonstration activities

Islands Energy Transition: Experience in H2020 Projects - Chapter II

REACT – GA 824395

11

Grid Stability Issues

How the REACT Project Aims to Tackle Geographical Islands' Grid Stability Issues

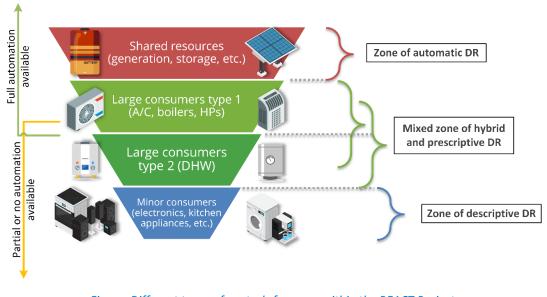


Figure: Different types of controls foreseen within the REACT Project (Source: Jelic et al. (2021))

	Grid services			Behind the meter				Off grid				
	Enhanced Frequency Response	Frequency Containment Reserve	Frequency Restoration Reserve	Energy Shifting / Load Levelling	Self-consumption (small residential)	Community Storage	Increased Power Quality	Peak Shaving	Time-of-use	Nano Off-Grid	Village Electrification	Island Grid
Pumped Hydro	1	1		1	1	1	1	1	1		1	1
CAES	1	1		4	1	1	1	1	1	1		1
Flywheel			4	1	4	1			4	1	4	1
Flooded LA	<u> </u>	4		1								2 C
VRLA	1	1		1			1		1	1		1
Li-ion (NMC)	4	1				4		1		1	<u> </u>	<u> </u>
Li-ion (NCA)		4										1
Li-ion (LFP)		4	1	4				4				
Li-ion (LTO)		1		1						1		1
NaNiCl				1						1		1
NaS	1	1		1	1		1	1	1	1		
VRFB	1	1					4			1		
ZBFB	1	1	1	1			1	1	1	1		<u> </u>

Source: International Renewable Energy Agency.

Note: CAES = compressed air energy storage; LA = lead-acid; VRLA = valve-regulated lead-acid; NMC = nickel manganese cobalt oxide; NCA = nickel cobalt aluminium oxide; LFP = lithium iron phosphate; LTO = lithium titanate; NaNiCI = sodium nickel chloride; NaS = sodium sulphur; VRFB = vanadium redox flow battery; ZBFB = zinc bromine flow battery;

Figure: Suitability of storage technologies for different applications (Source: "Electricity Storage and Renewables: Costs and Markets to 2030", International Renewable Energy Agency (IRENA)

Islands Energy Transition: Experience in H2020 Projects - Chapter II

Future Activities to Pursue REACT's Aims and Objectives regarding Renewables and Storage Technologies

- Completion of all installation & commissioning works of the RES and storage enabled infrastructure
- Test and validate REACT's ICT platform features
- Accomplish & track REACT's progress towards the achievement of the overall project's Scientific & Technical Objectives (STOs):
 - Increase RES hosting capacity coupled to large-scale energy storage deployment
 - Unlock DR potential + optimize distribution grid's flexibility
 - Perform lifecycle assessment and long-term plan of RES and storage enabled infrastructure
 - Engage end consumers to take an active part in the energy control loop
 - Develop effective business models ready for large-scale replication

Expected Outcomes and Impacts of the REACT Project

- Address Impacts From the Call through the REACT's Key Impacts (KIs):
 - Achieve at least 10% energy savings and 60% energy price drop in islands
 - Enable higher penetration (min. 50%) of RES in islands grids and reduce 50% of island's fossil fuel consumption
 - Unlock full potential of DR strategy in residential and tertiary buildings, enhancing grid balancing and other ancillary services
 - Reduce/defer max. 30% the DSOs required investments in grid reinforcements and grid balancing
 - Provide a high degree of interoperability with current systems
 - Unlock new services for the entire energy value chain

Economic Impact

- <u>At least 10% energy savings</u> <u>and 60% energy costs savings</u> by increasing local RES exploitation, energy efficiency and DR.
- <u>Allow access to the market</u> to new participates (end-users, aggregators)
- <u>Reduce grid maintenance cost</u> by enhancing assets monitoring

Social Impact

within the project period

energy cost reduction

control

• Creation of 20-50 skilled jobs

· Increase social benefits related to

• Improve energy system security by adding assets monitoring and

Technological Impact

- Develop and deploy a holistic multi- vector energy planning, management and operating platform targeting <u>100% Energy</u> Autonomy in Islands
- Development of innovative energy management algorithms unlocking DR that <u>will increase</u> <u>the penetration of RES by 50%</u> <u>and defer/avoid grids</u> <u>reinforcement investments</u>

Environmental Impact

- <u>Reduce 50% the fossil fuel</u> <u>consumption</u> by deploying costeffective RES systems
- <u>Improve islands air quality</u> by increasing energy efficiency and RES exploitation
- <u>**Reduce waste**</u> by enhancing energy system utilization

Policy and Standard Impact

- <u>Contribution to 20/20/20 EU</u> <u>objectives</u> (Renewable Energy, GHG emissions, Energy efficiency)
- Influence the development and <u>effective implementation of new</u> <u>policies and EU directives</u> for Islands multi-vector energy grids.

Sum-up

G

	Island 1 (La Graciosa)	Island 2 (San Pietro)	Island 3 (Inis Mor)
Renewable energy sources	 New PV systems: 22 x between 1.1 – 7.8kWp (total 60.1kWp) 	 New PV systems: 15 x between 3.0 – 19.9kWp (total 80.0kWp) 	 New PV systems: 19 x between 2.2 – 11.1kWp (total 81.2kWp)
	• Existing PV systems: 1 x 4.5kWp and 1 x 29.6kWp (total 34.1kWp)	 Existing PV systems: 16 x between 1.0 – 19.8kWp (total 119.7kWp) 	• Existing ST systems: many small ST systems for both heating and DHW use
	• Existing ST systems: many small ST systems mainly for DHW use	• Existing ST systems: many small ST systems mainly for DHW use	
Type of energy storage technologies used	 Li-ion LFP: 11 x 6.4kWh (total 110.80kWh) Li-Ion NMC: 1 x 3kWh 	 New ESS – Li-ion LFP: 30 x between 4.2 – 16.8kWh (total 210.0kWh) 	 Li-ion LFP: 14 x between 6.0 – 16.0kWh (total 134.0kWh)
	• PLH-C : 4 x between 4.19 – 8.16kWh (total	• Existing ESS - Pb: 1 x 16.8kWh	 NaNiCl₂: 4 x 6.0kWh (total 24.0kWh)
	22.90kWh)		• P2H : 1 x 31kWh
	• NaNiCl₂ : 1 x 7.70kWh		
	 VLA/VRLA: 3 x between 4.9 – 9.0kWh (total 18.80kWh) 		
Grid stability issues and improvement	• Issues : Grid safety, power quality, power fluctuation, new disruptive DG/ESS technologies integration, etc.	 Issues: Grid safety, power quality, power fluctuation, new disruptive DG/ESS technologies integration 	
	 Improvement: Establish RECs, provide grid supportive & ancillary services, enhance grid flexibility 	 Improvement: Establish RECs, promote VPP & aggregator services, stimulate penetration of new RES technologies 	 Improvement: Establish RECs, increase grid synergies, provide grid supportive & ancillary services, enhance grid flexibility
End users/consumers involved	 Buildings (Residential, Commercial, Tertiary & Public/Institutional) 	 Buildings (Residential, Commercial, Tertiary & Public/Institutional) 	 Industry, Transport and Buildings (Residential, Commercial, Tertiary & Public/Institutional)
Lesson learnt	 Poor RES knowledge, challenging user engagement, local (mainly urban planning) RES framework limitations for RES/storage deployment 	framework limitations for RES/storage deployment, VPP as key enabler	and local RES framework, promising grid synergies potential
Future results		ution grid estimation and fault detection, renewable energy at community level, innovative business more	ergy supply & demand forecasting, improved smart grids dels for sustainable grids in geographical islands

Islands Energy Transition: Experience in H2020 Projects - Chapter II

How To Achieve Island Energy Independency & Self-Sufficiency

- REACT takes promising background from previous smart grid and R&D activities to work around four Innovation Levels (ILs):
 - 1. Advanced innovative technologies
 - 2. Technology integration
 - 3. New synergies
 - 4. User engagement & Business models
- REACT's work flow to decarbonizing energy systems of geographical islands runs through several paths:
 - Optimization of multi-carrier energy dispatching (electricity, gas, transport)
 - Holistic cooperative demand response (DR) strategy at community level
 - Integration and testing of innovative energy storage technologies
 - Establish synergies between different energy grids of the islands
 - Deployment of advanced decision support tools
 - User engagement to take an active part in the control loop

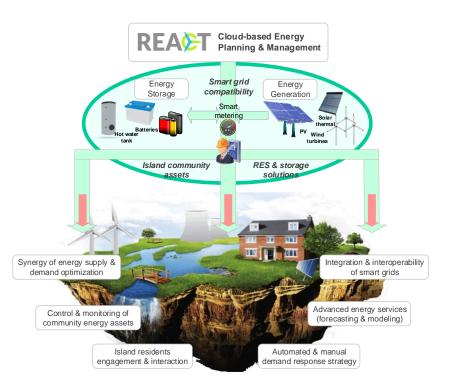


Figure: Schematic of the main contributions & innovations of the REACT project towards the achievement of geographical island's energy independency & self-sufficiency

Subscription to REACT newsletters and website

Project website https://react2020.eu/es/

LinkedIn https://www.linkedin.com/company/react-2020-project/

Twitter https://twitter.com/React2020

Renewable Energy for Self-Sustainable Island Communities

YouTube channel

https://www.youtube.com/channel/UCDPj1ebKXQyskcTPY5nB7BA

Facebook groups (Irish pilot in progress) https://www.facebook.com/LaGraciosaREACT/ https://www.facebook.com/SanPietroREACT

You can contact us at info@react2020.eu

Islands Energy Transition: Experience in H2020 Projects - Chapter II

Workshop organized by

RI A

THANKS FOR YOUR ATTENTION!

These projects have received funding from the European Union's Horizon 2020 research and innovation programme

REAC