

BASAJAUN

Biobased components for curtain wall façade Preliminary insight of Basajaun project

Sustainable Places 2023 • 14th-16th of June 2023 Laura Vandi, Innovation project manager FOCCHI SPA

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 862942

* * * * * * * *

basajaun-horizon.eu

SUSTAINABLE PLACES 2023

Overview

- Introduction
- Methodology
 - Basajaun facade specifications
 - Development of facade system design
 - o Tests and results

BASAJAUN

Conclusion

Introduction

Basajaun overview

- Project timeline 01/10/2019 → 31/03/24
- Call •

H2020 – IA grant n° 862942 LC-RUR-11 Part B

BASAJAUN

Partners

29 partners from 12 countries Coordinator - TECNALIA RESEARCH and INNOVATION Javier.GarciaJaca@tecnalia.com

Focchi •

> Responsable for the designing and manufacturing a prefabbricated curtain wall building envelope which integrates bio-based materials

Basajaun context and objective

Forestry and wood industries provide employment and income in Europe's rural regions

Wood stores CO2 in solid products for decades and can be recycled both biologically and technically.

BASAJAUN

The digital transformation is leading to disruptive changes also in forestry and wood industries.

Wood construction supply chain

Basajaun outcomes

Digital twin F2DBF

Industry 4.0 platform to ensure traceability and transparency of engineering process

Studies and Reports

Building with wood addressing a holistic value chain and rural development

Co-creation platform

Upscaling of results together with more regional companier and stakeholders

SUSTAINABLE

PLACES

Methodology

Methodology

BASAJAUN

State of art and needs definition

Global building floor area is expected to double by 2060.

© Architecture 2030. All Rights Reserved.

BASAJAUN

Basajaun facade objectives

to use biocompositesbased product from forest materials

Laura Vandi – FOCCHI SPA

to industrialize the manufacture process in factories

BASAJAUN

to make the transport and installation activities easy and safe

to design a nonstructural and lightweight envelope

Architectural customization

to implement multiple typologies (vision and opaque building) of façade systems with different targets

Material cladding and Facade typology

Unitized Curtain Wall system

Basajaun performances target

BASIC REQUIREMENT		FINLAND BUILDING CODE	FRANCE BUILDING CODE	BASAJAUN FACADE SYSTEM DESIGN	
	Reaction to fire	D-s2, d2 - B-s1, d0 Cladding system: D-s2, d2 - A2- s1, d0	IT249 - NF EN 1995-1-2+ national annexe	B1-s1,d0	
Safety in case of fire	Fire resistance	EI30 - EI120	R 15 to 90 depending on the category of family. limitations are depending on building types	EI30 internal layer Fire resistance test to be conducted	
Protection against noise	Airborne sound insulation	Sound insulation R'w \ge 30 dB. SFS-EN ISO 717-1.	Acoustic reduction index RA=31	RA=31 Acoustic test to be conducted	
Energy economy and heat retention	Thermal transmittance	U Value of wall/facade ≤ 0,17 W/m²K U value of window ≤ 1,0 W/m²K	U Value of opaque = 0,20 W/m²K U Value window ≤1,3 W/m²K U Value door ≤ 0,80 W/m²K	Simulation with EN ISO 10077-2:2019	
		Air permeability rate (q50) of a building envelope may be a maximum of 4.0 m3/(h m2).	Air permeability < 0.4 m3(h/.m2)	Air permeability < 0.4 m3(h/.m2) Test under 13830 to be conducted	

BASAJAUN

Facade system design: technology selection

1. The lowest value of transmittance is the solution of the wooden profile with the pultruded.

2. To reduce the number of components and optimizing the façade system it has been chosen the solution with only a pultruded profile whose transmittance value is slightly higher

Basajaun biocomposite profile

Biocomposite profile

Pultrusion process

BASAJAUN

Facade system design - components

BASAJAUN

Laura Vandi – FOCCHI SPA 16t^h of June 2023

1 + +

 Θ

0.0

. . .

Vision unit

कार्य कार्य का

...

...

••• विसेक प्रितेसंह 🖬 3850

Biocomposite profile

Main profile - mullion and transom

BASAJAUN

ъ Ø

Male accessory for male transom

Window frame

Facade system design – mechanical simulation

Simulation of Module 1 with maximum load: Maximum wind load= 3.5KN/m2

Perimeter Structure Stress Analysis:

Figure 48 Perimeter structure stress analysis

BASAJAUN

Stress ZZ - Permissible Stress: 38 MPa

Figure 49 The maximum stress is exceeded in a small area, so the profile is considered adequate.

Simulation of Module 1 with typical load: Maximum wind load= 1.5KN/m2

Perimeter Structure Stress Analysis

Figure 53 Perimeter Structure Stress Analysis

Figure 54 The maximum stress is exceeded in a really small area, so the profile is considered adequate.

Facade system design – thermal simulation

Figure 74 Typical elevation for nodes identification

UCW = 0.19 W/m2K \leq 0.20 W/m2K (French Demo) VERIFIED

Laura Vandi – FOCCHI SPA 16t^h of June 2023

Integration of the system in the demo buildings

Finnish demo

French demo

Building typologies – French Demo

Tests and results

Mock-up manufacturing – opaque unit

Wooden panel positiong

double tape for watertightness

Mullion and Transom

connection

system fixing

Double tape positioning for the

internal membrane fixing to

Cladding positioning to the facade module

Internal membrane - position

to the module facade

External tape for water tightness

Opaque facade module -Acoustic and Fire mock-ups

Laura Vandi – FOCCHI SPA 16t^h of June 2023

Mock-up manufacturing

Opaque unit

Vision unit

Performance mock-up

Preparation phase

- Test Chamber in accredited entity premises ISTITUTO GIORDANO
- Test conducted by accredited entity ISTITUTO GIORDANO

Design

The test is composed by 6 units:

BASAJAUN

- Ground floor: 3 vision units (Finnish demo);
- First floor:
 - 2 opaque units with different external finishing (French and Finnish demo);
 - 1 window unit (French demo)

Laura Vandi – FOCCHI SPA 16t^h of June 2023

Performance mock-up

Result

- Report by accredited entity
- Results achieved

Conclusion

- Innovative ventilated façade tested with EN ISO 13830:2005
- Safety façade demonstrated with different materials (interchangeable)

Activity		Test reference	Classification reference	Class*
air permeability	related to overall area			A4
through fixed parts	relating to fixed joint length		UNI EN 12152	A4
watertightness		UNI EN 12155	UNI EN 12154	R7
resistance to windload under design load +1350 Pa and -1350 Pa		UNI EN 12179	UNI EN 13116	pass
internal impact resistance		UNI EN 14019	UNI EN 14019	12
external impact resistance		UNI EN 14019	UNI EN 14019	E5

Acoustic mock-up

Preparation phase

- Test Chamber in accredited entity premises TECNALIA
- Test conducted by accredited entity TECNALIA

Design

The test is composed by 3 units:

- 3 vision units (Finnish demo);
- 3 opaque units (French demo);

Acoustic mock-up

Opaque unit

BASAJAUN

©Tecnalia

Vision unit

©Tecnalia

Rating according to EN ISO 717-1:2020: R_w(C;C_{tr}): 42 (-2; -6) dB; C₁₀₀₋₅₀₀₀: -1 dB; C_{tr,100-5000}: -6 dB R_A = R_w + C₁₀₀₋₅₀₀₀: 41 dB R_{A,tr} = R_w + C_{tr,100-5000}: 36 dB Evaluation based on laboratory measurement results obtained by an engineering method.

Fire mock-up: fire resistance

Preparation phase

- Test Chamber in accredited entity premises TECNALIA
- Test conducted by accredited entity TECNALIA

Design

The test is composed by 3 units:

- Opaque unit 1.
- Vision unit 2.

Result

Fire resistance classification: El 60 (i→o)

3000

15 100% isocurv 60% isocurve = 50% isocurv - 35% isocurve Test conducted at 100% of ISOCURVE for OPAQUE module

Test conducted at 35% of ISOCURVE for VISION module

Fire mock-up: fire reaction

BASAJAUN

	eg
REPORT No.	074286.6-001-1-a
APPLICANT	TECNALIA
ADDRESS	MIKELETEGI PASEALEKUA 2, E-20009 DONOSTIA – SAN SEBASTIAN (GIPUZKOA)
MANUFACTURER OF PANELS	FOCCHI SPA
ASSEMBLY PERFORMED BY:	TECNALIA
PURPOSE	REACTION TO FIRE TEST REPORT ACCORDING TO EN 13823:2020
TESTED SAMPLE	SPANDREL FAÇADE (FMU1) – Basajaun project REF.«BASAJAUN PROJECT (G.A.:862942) »
RECEPTION DATE	15.11.2021
TEST DATES	22.12.2021
SSUE DATE	09.06.2022

Fire mock-up: spread test

Preparation phase

- Test Chamber in accredited entity premises TECNALIA
- Test conducted by accredited entity TECNALIA

Design

- 1. N°3 Opaque units
- 2. N°3 Vision units

Conclusion

Conclusion

Project requirements achievement

- Industrialization
- Customization (facade typology and materials for cladding)
- Applicable to opaque and vision units of the buildings
- Breathable with high thermal insulation properties
- Save, easy and fast on-site assembly
- Mainly made from renewable biobased materials
- Designed for disassembly for use in closed circular economy material loops

NEXT STEPS

- Reducing cost •
- Increasing biobased parts in • the profiles
- Reducing weight and thickness •
- Production process • optimization

Any questions?

Thank you for your kind attention

BASAJAUN

Laura Vandi

Innovation Project Manager

l.vandi@focchi.it

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 862942

* * * * * *

Thanks to

tecnal:a

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE