A simulation-based platform to design high-performance buildings that use phase change materials

<u>Dr. Facundo Bre^{1,2}</u> Prof. Eduardus Koenders¹

¹ Institut für Werkstoffe im Bauwesen, Technische Universität Darmstadt, Darmstadt, Deutschland E-Mail: <u>bre@wib.tu-darmstadt.de</u>

² Centro de Investigación de Métodos Computacionales (CIMEC), UNL, CONICET, Predio Dr. Alberto Cassano, Colectora Ruta Nacional 168, Paraje El Pozo, Argentina E-Mail: <u>facubre@cimec.santafe-conicet.gov.ar</u>

Phase change materials

Phase change materials (PCMs) are substances that can absorb/release large amounts of heat during the phase transition.

The OE-BUILDINGS project (MSCA-IF)

https://cordis.europa.eu/project/id/101024627

PCM modeling in buildings

EnergyPlus

The thermal capacity of PCMs is iteratively calculated at each time step as:

$$c_p(T) = \frac{h_i^j - h_i^{j-1}}{T_i^j - T_i^{j-1}},$$

where h is the enthalpy (J/kg), T is the temperature (°C), i indicates the material node, and j and j-1 indicate the current and previous time steps, respectively.

Single curve - MaterialProperty:PhaseChange

Phase change hysteresis of PCMs

Phase change hysteresis

Hysteresis in PCMs introduces a temperature delay between melting and solidification, complicating their behavior and modeling.

Klimeš, et al . 2020

Dual curve - MaterialProperty:PhaseChangeHysteresis

- A "numerical energy" is generated because of the modeling approach when incomplete cycles occur.
- The model is not energyconservative because of the switching approach between curves.
- Large heating/cooling load reductions can be wrong-predicted (5 times higher than PCMs without hysteresis).

Design of PCMs in buildings

PCM design parameters:

- Melting temperature.
- Location.
- Amount.
- Thermal conductivity.
- Thermal capacity.
- Others.

Sustainable Places 2023 - June 14-16 – Madrid, Spain.

Use and optimization of PCMs with different melting temperatures in buildings

 $\min_{\mathbf{x}\in\mathcal{V}} \quad [f_1(\mathbf{x}), f_2(\mathbf{x})]$

subject to :

$$x_i^L \le x_i \le x_i^U, \ i = 1, \dots, n;$$

The objective functions f1(x) and f2(x) are annual heating and cooling loads, which are obtained from the results for each EnergyPlus simulation.

Design variable	x^L	x^U
T _{peak} PCM-1 [°C]	18	26
T_{peak} PCM-2 [°C]	18	26
$T_{peak} PCM-3 [^{\circ}C]$	18	26
Thickness PCM-1 [m]	0.001	0.025
Thickness PCM-2 [m]	0.001	0.025
Thickness PCM-3 [m]	0.001	0.025

Bre et al. 2023

Climate-representative locations (ASHRAE-169) in the WMO-Region VI (Europe)

Optimization results

Optimization results

Optimization results: load reductions

ÂĊĒS

Effectiveness Indicators for PCMs

ALS is the annual load saved (kJ) by the incorporation of PCMs into • the building.

$$ALS = AL_{Baseline} - AL_{PCM}$$

$$LSC = \sum_{i=1}^{N} m_{PCM_i} \Delta h_{PCM_i}$$

Sensitivity analysis using the Morris method.

#	Design variable	ID	Unity	Level 1	Level 2	Level 3	Level 4
1	Thickness of PCM1 (walls)	$\mathrm{THK}_{\mathrm{PCM1}}$	m	0.005	0.020	0.035	0.050
2	Thickness of PCM2 (roof)	$\mathrm{THK}_{\mathrm{PCM2}}$	m	0.005	0.020	0.035	0.050
3	Peak melting temperature of PCM1 (walls)	$Tpeak_{PCM1}$	$^{\circ}\mathrm{C}$	20.5	22.5	24.5	26.5
4	Peak melting temperature of PCM2 (roof)	$\operatorname{Tpeak}_{\operatorname{PCM2}}$	$^{\circ}\mathrm{C}$	20.5	22.5	24.5	26.5
5	Thickness of insulation in the walls	$\mathrm{THK}_{\mathrm{INSUL}}$	m	0.050	0.083	0.117	0.150
6	Window-to-wall ratio	WWR	%	30	50	70	90
7	External shading length ratio	ESR	%	1	34	67	100

Effectiveness Indicators for PCMs

Sensitivity analysis results

To conclude

- The performance of PCMs in buildings is complex and their proper design requires the use of **whole-building performance simulation**.
- The **melting temperature**, **amount**, and **location** of PCMs should be carefully designed to maximize their performance.
- Using PCMs with different melting temperatures is preferred, especially in climate zones and case studies with both heating and cooling loads.
- Building design variables (e.g., window-to-wall ratio) have a significantly higher impact on the effectiveness of PCMs than typically employed PCM design variables (e.g., melting temperatures).
- In some climates, the performance of **passive PCMs** can be limited, and their design should be combined with other **passive strategies** and **architectural variables**, preferably at the early design stage.

Future works

- An automatic optimization procedure that characterizes all the knowledge got during the project is under development (to be published in the Open Research Europe (ORE) SI of Sustainable Places 2023).
- A simple web interface of the platform will be developed to give access to any building designers.

Research data – Zenodo repository

building performance simulation

https://zenodo.org/communities/0e-buildings/

Sustainable Places 2023 - June 14-16 - Madrid, Spain.

optimise phase change materials (PCM) used in the

Acknowledgments

The results found in this work are part of the **OE-BUILDINGS** project. This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 101024627 (<u>https://cordis.europa.eu/project/id/101024627/</u>).

Thank you for your attention!

0E-BUILDINGS

SUSTAINABLE PLACES 2023