

BECSME

Improving the energy performance of an office building with a virtual building management system

Dimitris Ntimos, IES R&D project manager, coordinator of iBECOME

Agenda

Intro to IES

Intro to IBECOME project

Case study – Helix Building

Energy Optimisation in Helix

Discussion and next steps

About IES

Our Vision

IES believe that every building of every city in the world can be decarbonised. Our purpose is developing the technology to make that happen.

Our ultimate aim is to create a built environment that is resource and energy efficient, eliminating global reliance on fossil fuels while promoting comfort, health and wellbeing, and fairer access to energy for every citizen in the world.

iBECOME Facts

€ 4.9M with requested EU funding of € 3.7M

10 Partners – 4 countries

48 months of Project duration

Project started in June 2020

Demonstration in 4 sites

Funded under: H2020-EU.3.3.1. - Reducing energy consumption and carbon footprint by smart and sustainable use

IBEC SME

iBECOME wants to demonstrate a combination of novel technologies for:

Reducing bills in a building or facility through energy savings and demand response while...

...improving occupant wellbeing and optimising comfort...

...by leveraging IoT, data analytics and the efficient control of a building...

...while enabling additional services such as EV charging optimisation...

Our targets for iBECOME vBMS

Reduce the energy use and energy bills in a facility by 15%

Reduce Comfort complaints by 20% and improve Indoor Air Quality by 10%

Improve the smart readiness of buildings by 10% (SRI)

Track, prevent and reduce equipment and operational faults by 20%

Improve wellness by 20%

Generate revenue by energy savings to invest in further Energy Conservation Measures

iBECOME virtual BMS

Services

Core

Energy-Comfort Optimisation

Measurement & Verification

Demand Response

Fault Detection & Diagnosis

Predictive Maintenance

What-if scenarios

Additional

Healthcare Management

EV Charging Optimisation

Car sharing

Can you think more?

Key IES achievements to fulfil iBECOME objectives:

New calibration tool for cloud, fast and accurate calibration

Bilateral integration with Schneider Electric BMS

Physics simulation engine advancements:

-deployed on the cloud

-enabled co-simulation

-developed public API

ML models for:

- -Comfort virtual sensors
- -Heating/cooling optimisation
- -Flexibility optimisation

The Helix Building

Audit/Survey – Current status and "problems"

- No BMS, just IoT sensors/meters
- Heating is on a weekly schedule
- No local heating control
- Temperature difference between zones
- Pre-heating not enough is very cold winter days
- Meeting rooms are either cold or overheated
- Physics Energy Model outdated (created for compliance with regulations)

IES R&D

Air quality issues in meeting rooms

iBEC ME

This project has received funding from the European Union's Horizor 2020 Programme under Grant Agreement no 894617

Solution –without

Off the shelve hardware from the market

- Portable WiFi space thermostat
- Smart TRV valves
- Window sensors
- Cloud access to Heat meters
- Cloud access to Electricity Meters

Facility/Energy Manager Work<mark>load</mark>

- Navigate daily-weekly to 4-5 apps
- Compare past year energy bills with current one
- Receive complaints and adjust heating
- Use spreadsheets to track and report

....Call technician when something fails

Solution – with iBECOME vBMS

IES Nevis Roo	om										Hello, Dimitrios Ntimos Log off
🛗 Mar 14, 2023 - Mar	14, 2023 🕶										Auto refresh in : 00.18 🛞
IES Demand	d Respon	se									
m •											Auto refresh in : 38:19 🐵
Carbon intensit kilowatt hour () generated creat The carbon inte	ty is a meas kWh) of ele tes CO2 en ensity in So	sure of how o ectricity. Elec nissions. outh Scotland	tricity that's tricity that's d is: 2 gCO2/l	Dem tricity is. It n generated u :Wh	and Response A efers to how sing fossil fu	dvisor many grams els is more ca	of carbon di arbon intensi	oxide (CO2) ve, as the pro	are released t ocess by whic	to produce a h it's	Dehumidifier is OFF Electric Heater 1 is OFF OFF
The following a optimisation alg	action item gorithm by	s are genera BECOME vi	ted every day BMS:	for the next	: day, based o	on the carbor	n intensity pr	edictions and	d the flexibilit	ty	CO2 emissions Daily Total
Action Items Turn off stand- Plug in your lap Avoid schedulin Plug in the elec	Action litems Turn off stand-by equipment such as monitors after 6pm to avoid uneccessary electricity use and carbon emissions Turn off stand-by equipment such as monitors after 6pm to avoid uneccessary electricity use and carbon emissions Plug in your laptop/mobile chargers between 12pm and 2pm to achieve lower carbon emissions Avoid scheduling the dishwasher between 8pm and 10pm Plug in the electric beater in Developers Area between 12pm and 2pm to boost thermal comfort										
											CO2 intensity in South Scotland
Below is a widg 10am - 12pm Friday	et that add 12pm - 2pm Plug in	zpm - 4pm	n UK averagi 4pm-6pm	e carbon inte 6pm – 8pm	nsity on whe Bpm - 10pm Wunplug	n to switch o 10pm - 12am	n devices to 12am - 2am Saturday	emit less CC 2am-4am	02 during thei 4am-6am	ir use. 6am - 8am	Apr 29 Apr 30 May 01 Pay 02 Hey 03 May 04 Pay 05 A
(VH = Very high car	rbon, H = High	carbon. M = Mod	erate. L = Low carl	oon, VL = Very low	r carbon)			EDF	🗲 natior	nal grid 🎡	
400 200 0- 12AM 2A	am 4am	6ÅM	84M 104M	12PM 2P	M 4PM	6РМ ВРМ	торм	50 0- 12	ZAM ZAM	4AM 6AM	6.04 10.04 12.04 204 604 604 804 1004

- All the live/historical sensor/meter data from all the hardware in one place
- Dashboard for the Energy/Facility manager
- Alerts for data gaps/anomalies
- CO2 alert in meeting rooms
- Utilised the old energy model used for compliance
- ML Comfort predictions
- ML Valve fault detection
- Battery degradation predictive maintenance
- Threefold Automatic control of heating
 - Data driven occupancy based in meeting rooms
 - Model based comfort-optimised in open office
 - "Smart" pre-heating based on next day weather forecast
- Demand Response advisor

IRFIAND

- Energy savings calculation using M&V
- What-if scenarios for decarbonisation.

Focus on Energy-Comfort Optimisation in Open Office

Objective:

Estimate energy savings, comfort improvements and payback time when applying 2 different control strategies

iBEC ME

15

Al predictive control Rule based Control

IES R&D

Methodology: Control logics

Results

Results

HEATING ENERGY PER ROOM

Results – Payback time

Parameters	Values	Units
Boiler Efficiency	93	%
Losses	10	%
System overall eff	84	%
Cost TRVs	97	Euro
# TRVs	21	-
iot devices	186	Euro
# iot devices	3	-
gateway	350	Euro
# gateways	1	-
Unit cost biomass	0.19	Euro/kWh
Final cost of fuel &		
taxes	0.23	Euro/kWh
jan-may	15	Weeks
oct-dec	13	Weeks
heating weeks	28	Weeks

- 1. System overall efficiency
- 2. Heating energy for the season
- 3. Heating costs for the season
- 4. Energy savings in different scenarios
- 5. Investment for equipment
- 6. Payback time
- 7. Scenarios based on uncertainties

Discussion

Benefits

- Proof of benefits of using operational digital twin for evaluation of control scenarios
- RL outperforms current control logic (calibrated model) and Rule-based approaches
- Estimate of payback time depending on the energy uncertainties related to energy savings

Issues

- RL requires time for fine-tuning (expert knowledge)
- Deployment is way more complex for RL compared to Rule-Based

Future work

- Understand if it is really possible to deploy RL or suggest deployment of only Rule-Based solutions
- Focus on similar use cases for iBECOME

Stay Tuned!

in

ibecome-project.eu

@ibecome-project

This project has received funding from the European Union's Horizon 2020 Programme under Grant Agreement no 894617

ENER®G

RESEARCH

MANUFACTURING

IRISH

VICTAS Pioneering Gridware Technology