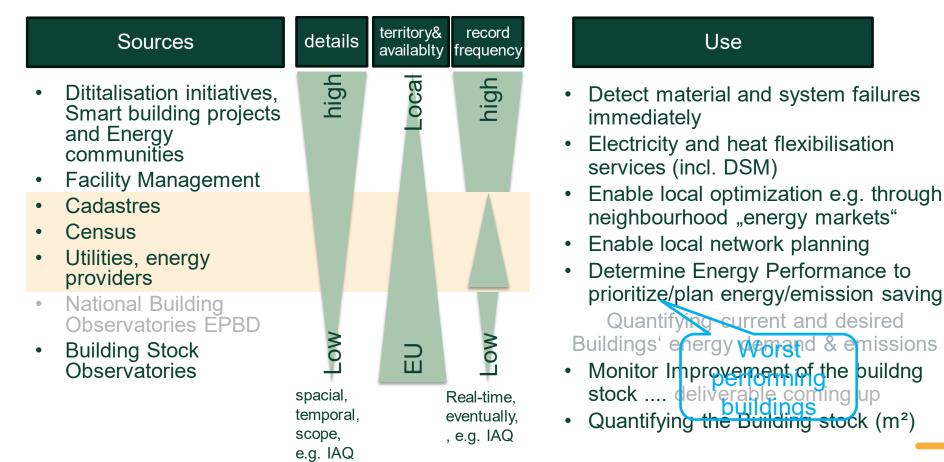

The Role of Buildings Data Hubs in the Energy Transition

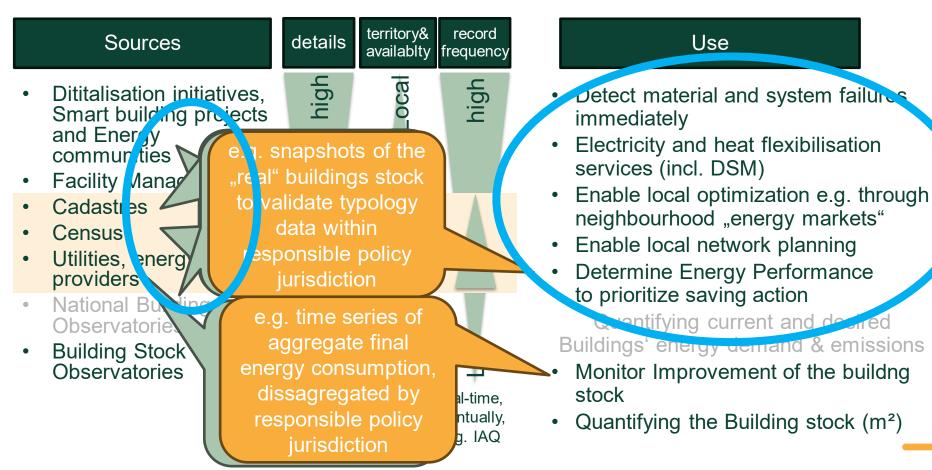
Data sources and uses **define the need for data hubs** for energy transition decision makers and implementers, to deliver on the latest EED revision and EPBD recast.



Judit Kockat BPIE - Buildings Performance Institute Europe

EO The Role of Data Sources

The Role of Data Sources in Enabling Energy Transition Actions



- -Updated standards for new buildings: ZEBs
- Renovation policies for existing buildings: MEPS, NBRPs,
- Planning for the 2050 vision and H&C decarbonisation: NBRPs
- -Stronger enabling framework: information (EPCs), advisory, financial support

IMPLEMENTATION GUIDE \rightarrow not before the end of 2024

EO The Role of Buildings Data Hubs in the Energy Transition

O What a DataHub can provide

- Organize and align, map datasets
- Perform defined validation and quality checks
- Provide one datasource for all stakeholders and uses
- Provide different aggregation levels for different uses
- Provide defined reports
- Organize data uploads and database updates
- Provide standardized analysis and visualisations

Thank you for your attention.

Judit Kockat

Project Manager Judit.kockat@bpie.eu T +32 (0) 2 789 30 00 | M +32 470 60 35 08 www.bpie.eu

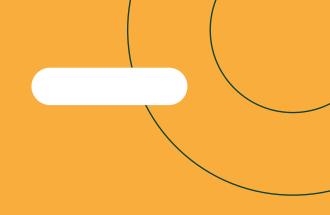
Follow us: **f in**

Thank you.

This project has received funding from the EU's Horizon 2020 program under grant agreement no 957026.

SUSTAINABLE PLACES 2024

Builthub Workshop


Platform presentation

NTT Data & EURAC

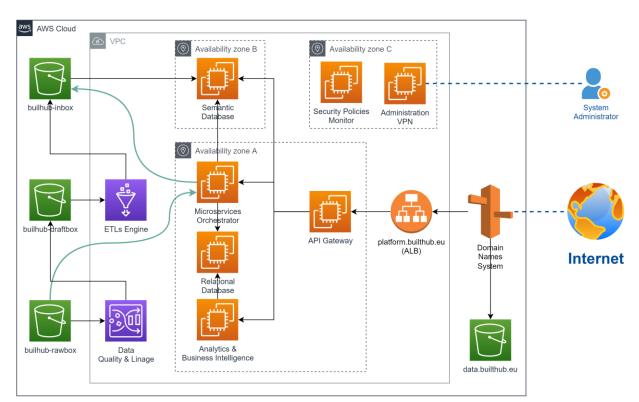
This project has received funding from the EU's Horizon 2020 program under grant agreement no 957026.

High level architecture

High level architecture

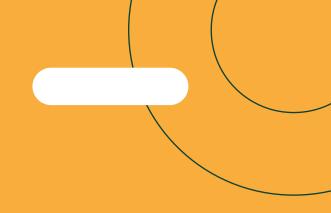
The architecture of the BuiltHub platform is a cloud-native system deployed in the Amazon AWS cloud.

As BuiltHub is an open platform, everyone can benefit from the knowledge and information stored in the data hub, from construction companies to national governments, even property owners.


The user will be able to export, filter and visualize building energy performance data, which will allow for the creation of suitable business models, policies and finance strategies. Through BuiltHub services the user will also be able to directly evaluate the data against key performance indicators, scenarios and market and investment parameters.

BuiltHub can also integrate external information from other data sources, not necessarily storing all the data. An example of this could be to integrate information about the population of each desired country from the data source "Wikidata"

High level architecture


BuiltHub has adapted its architecture to support the requirements of privacy, high availability, workload and efficiency of a modern dataintensive platform.

This changes allowed the platform to maintain the data ingestion workflow and improve the security and performance of the platform, as it now runs layers of specific microservices and a more dedicated database.

The building-blocks architecture of BuiltHub

Technical Overview

Challenges

The challenges the platform has come to face can be divided into two major categories:

- 1. Functional Requirements, that represent the set of specific actions a system must perform to meet user needs and accomplish its intended tasks. They typically describe the system's explicitly stated functionalities, such as user interactions, data processing and mapping, and output.
- 2. Cross-functional Requirements, which refer to key aspects that cut across multiple functional sectors and define the components of the system. Unlike functional requirements, which focus on specific functionalities or features and provide the overall rationale, cross-functional requirements address concerns that impact the system as an entity. These requirements ensure that the system functions seamlessly and effectively in diverse environments and under various conditions, improving its value.

Cross–functional Requirements

Cross-functional requirements play a major role in the shaping of the technical architecture. They implicitly direct the choice of technologies implicated and the design of the respective components.

Their spectrum can be broken down in discrete pillars on top of which decisions are taken:

- Efficiency, the solution should be cost-effective and easy to develop on
- Reusability, the components should be easily integrated and reusable for multiple purposes
- Security, the platform should be secure
- Scalability, the application should be able to adapt according to the performance needs
- Extensibility, new features and capabilities should not imply a holistic system redesign and implementation
- Fault-tolerance, application errors should not be catastrophic, but easy to recover from

Technology Stack Overview

- Amazon Web Services, including IAM, EC2, S3, Glue, Glue Databrew, Lambda
- Dockerized deployment
- Angular 14 with Highcharts
- Java 17 with Spring Boot 2
- GraphDB
- PostgreSQL with the PostGIS extension
- Knowage, Open-Source Analytics and Business Intelligence Suite

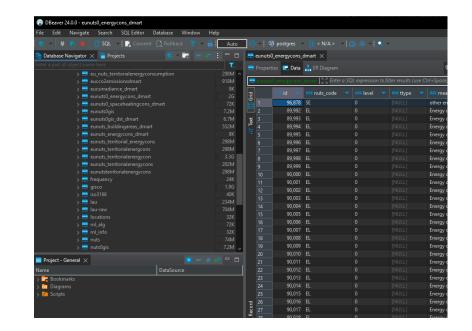
The Data Lakes

GraphDB is a kind of NoSQL graph database. It uses

- · graph structures with
- nodes,
- edges, and
- properties

to store and represent data.

It is highly recommended when managing data which is highly connected with complex and large relationships within datasets.


Active repository Local F BuiltHub • The BuiltHub semantic repository total statements 333,120,810 explicit 338,338,952 5,218,142 inferred Import RDF data Import tabular data with OntoRefine Export RDF data Export RDF data

The Data Lakes

PostgreSQL is a potent opensource relational database.

PostGIS, being an extension, comes into the picture to enhance the capabilities of PostgreSQL.

It supports geographic objects, enabling the storing, analysis, and management of Spatial Data.

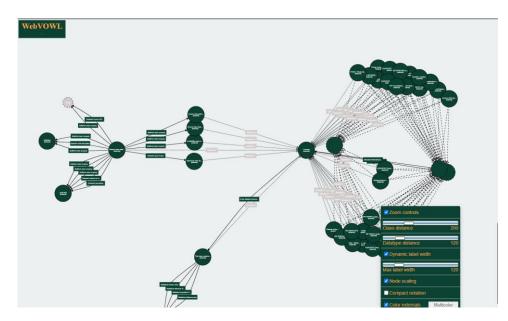
Querying the Datasets

Datasets

- can reside in more than one data store database
- are of RDF format
 - They are not limited to the traditional entity-relationship model
 - They present a more evolutive scheme
 - They have "expressions" that best describe their linked data structure

The answer is SPARQL

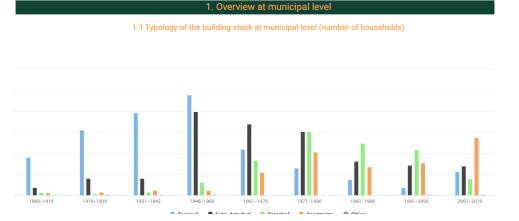
	🗶 EUROSTAT: Final energy consumption in households 📓 🏛 🛛 +					
10	<pre>pretix rdt: <http: 02="" 1999="" 22-rdt-syntax-ns#="" www.w3.org=""></http:></pre>					
11	<pre>prefix rdfs: <http: 01="" 2000="" rdf-schema#="" www.w3.org=""></http:></pre>					
12	<pre>prefix cbhsv: <http: cbhsv#="" data.builthub.eu="" ontology=""></http:></pre>					
13						
14	SELECT DISTINCT ?identifier ?startDate ?endDate ?location ?nut:					
15 -	WHERE {					
16	<pre>?s a cbhsv:Dataset014 ;</pre>					
17	<pre>dc:identifier ?identifier ;</pre>					
18	<pre>dct:temporal/dcat:startDate ?startDate ;</pre>					
19	<pre>dct:temporal/dcat:endDate ?endDate ;</pre>					
20	<pre>dcat:spatial/skos:prefLabel ?location ;</pre>					
21	<pre>cbhsv:measuredElement ?measuredElement;</pre>					
22	<pre>cbhsv:siec/skos:prefLabel ?siec ;</pre>					
23	<pre>cbhsv:measurementUnit ?msrUnit;</pre>					
24	chhou moocupomontValuo OmenValuo					


Visualizing the results could present to be a complex and sophisticated task. The semantic model is "machine readable" but might prove to be confusing when it comes to human perception.

In order to offer a human-centered solution, the ideal approach would be to visualize data entities by creating graphical representations. Thusly, the clustering of data would be analyzed, labeled, and effectively easier to understand and navigate through.

To assist on this cause, we have the following palette of tools

- Highcharts for Angular
- WebVOWL
- Knowage


WebVOWL is a web-based visualization tool for visualizing and exploring ontologies represented in the Web Ontology Language (OWL). It provides interactive visualizations of ontology structures, classes, properties, and relationships, helping users better understand and analyze complex ontologies in a graphical format.

Highcharts is a JavaScript library for creating interactive and visually appealing charts and graphs on web pages. It offers a wide range of chart types.

When used with Angular, Highcharts can be seamlessly integrated into Angular applications to display datadriven visualizations with ease.

Thusly visualizing the semantic model that resides in the Data Lakes of BuiltHub.

Knowage is an open-source business intelligence and analytics platform that provides tools for data visualization and reporting. It offers a powerful set of features, including dashboards, ad-hoc analysis, OLAP, and advanced analytics.

Data visualizations can be referenced by the Angular frontend, making it easier to create comprehensive visualizations that can be easily extended and presented to the end-user.

Gro	ups		Countries			
EU27	EU28	Austria, Belgium, Croatia, German	Austria, Belgium, Croatia, Germany, Greece, Ireland, Italy, Netherlands, Portugal, Sweden 🔻			
Country	NUTS	Indicator Name	Period	SIEC	Sector	
Portugal	PT	Total Final Energy Consumption	2016-2016		Residential Sector	
Portugal	PT	Total Final Energy Consumption	2016-2016		Service Sector	
Sweden	SE	Total Useful Energy Demand	2016-2016		Residential Sector	
Sweden	SE	Total Useful Energy Demand	2016-2016		Service Sector	
Portugal	PT	Total Useful Energy Demand	2016-2016		Service Sector	
Italy	IT	Total Final Energy Consumption	2016-2016		Service Sector	
Germany	DE	Total Final Energy Consumption	2016-2016		Service Sector	
Ireland	IE	Total Final Energy Consumption	2016-2016		Residential Sector	
Germany	DE	Total Useful Energy Demand	2016-2016		Service Sector	

Deploying the Platform


The backbone of the platform is composed from a plethora of services, outside the AWS umbrella. These services revolve around the main categories of

- Frontend, client-side applications, providing the graphical user interface discusses previously,
- Middleware, acting as facilitators between third services and applications, orchestrating calls
- Backend applications, server-side programs responsible for managing databases and data processing

The platform uses an elastic and flexible approach when it comes to deployment. The individual services are Dockerized, which means:

- · services can allocate exclusive resources,
- · scale up / down individually being isolated
- it is simpler to adopt of a continuous integration / continuous delivery solution
- DevOps and Operations in general become easier as respective components are isolated and have their own environment

Q & A

SUSTAINABLE PLACES 2024

Sustainable operation of buildings data hubs in support of the energy transition

Insights from the Horizon 2020 BuiltHub project

This project has received funding from the EU's Horizon 2020 program under grant agreement no 957026.

- Welcome and introduction | Alexander Deliyannis, Sympraxis
- The role of buildings data hubs in the energy transition | Judit Kockat, BPIE
- Introduction to the BuiltHub data platform and the Building Stock Observatory | Ulrich Filippi Oberegger, *Eurac*
- Key aspects of buildings data hubs setup and operation | Georgios Pardalis, NTT DATA
- Operational viability and long-term sustainability of buildings data hubs | Alexander Deliyannis, Sympraxis
- Wrap-up, discussion, Q&A | All

SUSTAINABLE PLACES 2024

Operational viability and long-term sustainability of buildings data hubs

Insights from the Horizon 2020 BuiltHub project

This project has received funding from the EU's Horizon 2020 program under grant agreement no 957026.

- Introduction
 - Sourcing
 - IP considerations
 - AI considerations
- Operational viability of building data hubs
 - Basic operational model
 - Key scenarios
- Long-term sustainability of buildings data hubs
 - EU level
 - National / Regional level
 - Local level
 - Independent operation
- Wrap-up, discussion, Q&A

- Why building data hubs?
- Where are we today?

JRC Publications Repository

Home Search Help

European Commission > JRC > JRC Publications Repository > Mapping the landscape of data intermediaries

Mapping the landscape of data intermediaries

Subtitle: Emerging models for more inclusive data governance

Abstract: The report provides a landscape analysis of key emerging types of data intermediaries. It reviews and syntheses current academic and policy literature, with the goal of identifying shared elements and definitions. An overall objective is to contribute to establishing a common vocabulary among EU policy makers, experts, and practitioners. Six types are presented in detail: personal information management systems (PIMS), data cooperatives, data trusts, data unions, data marketplaces, and data sharing pools. For each one, the report provides information about how it works, its main features, key examples, and business model considerations. The report is grounded in multiple perspectives from sociological, legal, and economic disciplines. The analysis is informed by the notion of inclusive data governance, contextualised in the recent EU Data Governance Act, and problematised according to the economic literature on business models.

- Types of sources available
- Systems of reference

nature

Explore content 🗸 About the journal 🖌 Publish with us 🗸 Subscribe

<u>nature</u> > <u>news</u> > article

NEWS | 19 October 2023

AI tidies up Wikipedia's references – and boosts reliability

A neural network can identify references that are unlikely to support an article's claims, and scour the web for better sources.

By Chris Stokel-Walker

Ƴ (f) 💌

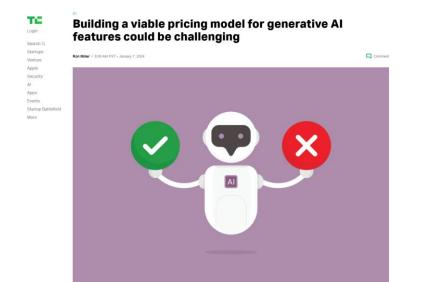
Wikipedia lives and dies by its references, the links to sources that back up information in the online encyclopedia. But sometimes, those references are flawed – pointing to broken websites, erroneous information or non-reputable sources.

Introduction – IP Considerations

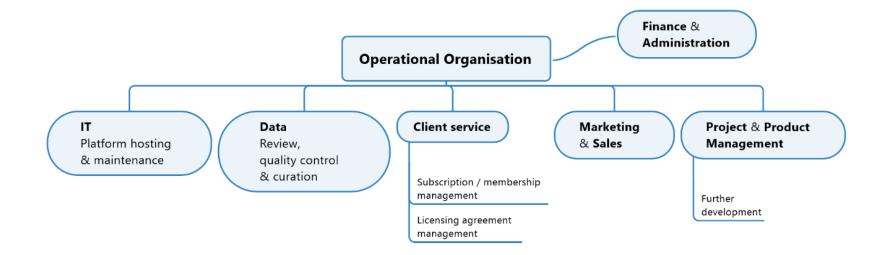
- Open Data
- Compensation
- Mixed Models, e.g., "freemium"

Introduction – AI considerations

- Reliability
- Attribution & Transparency
- Competitiveness



Less than two years ago, the launch of ChatGPT started a generative AI frenzy. Erral E Some said the technology would trigger a fourth industrial revolution, completely X X (Twitter) Facebook reshaping the world as we know it. In Linkedin



Operational viability of building data hubs

- · What we mean
- Public sector clients authorities
- Private sector clients real estate, insurance agencies etc.

Department of the second secon

- MVP
- Conservative
- Ambitious

Forecast 🔨				
Revenues (in €)	*	2025	2026	2027
 Subscriptions (Basic only) 	Edit 🗉	€ 44,550	€ 178,200	€ 320,760
~ Projects	Edit 🗉	€0	€0	€0
 Subsidies 	Edit 🗉	€ 240,000	€ 240,000	€ 240,000
Total Revenue		€ 284,550	€ 418,200	€ 560,760

Forecast 🔨

Cost of Goods Sold $(in \in)$	¥	2025	2026	2027
^ Direct Labor		€ 228,950	€ 240,398	€ 252,417
 Content Integration Expert (1) 	Edit 🗉	€ 72,300	€ 75,915	€ 79,711
~ IT Leader (0)	Edit 🗉	€0	€0	€0
 IT Maintenance Team (2) 	Edit 🔟	€ 96,400	€ 101,220	€ 106,281
 Customer Service (1) 	Edit 🗊	€ 60,250	€ 63,263	€ 66,426
 Other Direct Expenses 		€0	€0	€0
 New (external) data licensing 	Edit 🛈	€0	€0	€0
Total Cost of Goods Sold		€ 228,950	€ 240,398	€ 252,417

Operational viability – Key scenario – Conservative

Forecast 🔨

Revenues (in €)	*	2025	2026	2027
 Subscriptions (Basic & Licensing) 	Edit 🔟	€ 74,250	€ 534,600	€ 1,033,560
✓ Basic Access		€ 44,550	€ 178,200	€ 320,760
~ Licensing		€ 29,700	€ 356,400	€ 712,800
~ Totals		€ 74,250	€ 534,600	€ 1,033,560
^ Projects	Edit	€ 81,938	€ 344,138	€ 542,017
# Billable Hours	R	1,140	4,560	6,840
v ∈ Hourly Rate	R	€ 72	€ 75	€ 79
^ Subsidies	Edit 🗊	€ 320,000	€ 320,000	€ 320,000
€ Revenue Only	R	€ 320,000	€ 320,000	€ 320,000
Total Revenue		€ 476,188	€ 1,198,738	€ 1,895,577

Forecast 🔨

Cost of Goods Sold (in €)	×	2025	2026	2027
 Direct Labor 		€ 397,650	€ 493,448	€ 597,831
 Content Integration Expert (2-4) 	Edit 🗊	€ 144,600	€ 227,745	€ 318,843
✓ IT Leader (1)	Edit 🗊	€ 96,400	€ 101,220	€ 106,281
~ IT Maintenance Team (2)	Edit 🗊	€ 96,400	€ 101,220	€ 106,281
~ Customer Service (1)	Edit 🗊	€ 60,250	€ 63,263	€ 66,426
^ Other Direct Expenses		€ 60,000	€ 60,000	€ 60,000
~ New (external) data licensing	Edit 🗊	€ 30,000	€ 30,000	€ 30,000
~ External AI services	Edit 🗊	€ 30,000	€ 30,000	€ 30,000
Total Cost of Goods Sold		€ 457,650	€ 553,448	€ 657,831

Forecast 🔨

Revenues (in €)	*	2025	2026	2027
 Subscriptions (Basic & Licensing) 	Edit 🔟	€ 129,690	€ 825,660	€ 1,583,010
~ Basic Access		€ 80,190	€ 320,760	€ 543,510
~ Basic Licensing		€ 49,500	€ 504,900	€ 1,039,500
~ Totals		€ 129,690	€ 825,660	€ 1,583,010
^ Projects	Edit 🗊	€ 90,131	€ 377,344	€ 594,316
# Billable Hours	R	1,254	5,000	7,500
✓ € Hourly Rate	R	€ 72	€ 75	€ 79
^ Subsidies	Edit 🗊	€ 320,000	€ 320,000	€ 320,000
€ Revenue Only	R	€ 320,000	€ 320,000	€ 320,000
Total Revenue		€ 539,821	€1,523,004	€ 2,497,326

Forecast 🔨

Cost of Goods Sold $(in \in)$	*	2025	2026	2027
^ Direct Labor		€ 397,650	€ 493,448	€ 597,831
 Content Integration Expert (2-4) 	Edit 🗊	€ 144,600	€ 227,745	€ 318,843
~ IT Leader (1)	Edit 🗊	€ 96,400	€ 101,220	€ 106,281
~ IT Maintenance Team (2)	Edit 🗊	€ 96,400	€ 101,220	€ 106,281
~ Customer Service (1)	Edit 🗊	€ 60,250	€ 63,263	€ 66,426
^ Other Direct Expenses		€ 360,000	€ 360,000	€ 360,000
 New (external) data licensing 	Edit 🗊	€ 240,000	€ 240,000	€ 240,000
~ External AI services	Edit 🗊	€ 120,000	€ 120,000	€ 120,000
Total Cost of Goods Sold		€ 757,650	€ 853,448	€ 957,831

Long term sustainability of building data hubs

· What we mean

BUSINESS

Stanford study suggests remarkable savings made possible by clean energy transition: 'Reliable and inexpensive'

"The results provide countries with concrete evidence and the confidence that 100% clean, renewable grids are not only lower in costs but are also just as reliable as the current grid system."

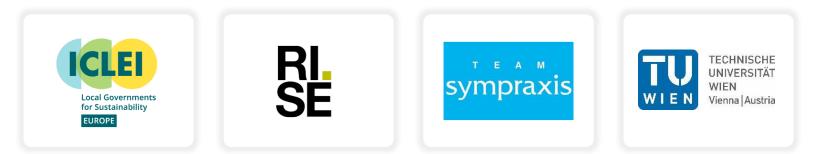
By Jeremiah Budin / March 11, 2024

Long term sustainability of building data hubs

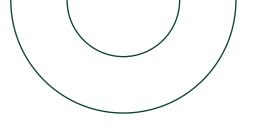
- EU level
- National / regional level
- · Local level
- Independent operation

Relevant European initiatives (indicative)

- Building Stock Observatory & National Building Observatories
- INSPIRE
- Open Data Spaces
- Data Governance Act
- Al Regulation
- Mistral.ai, etc.


≣O

Wrap-up, discussion, Q&A

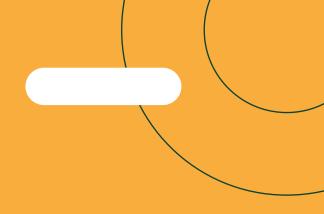

- Viability -mid-term- is achievable and important for developing building/energy information hubs
- Sustainability -long-term- implies recognition of the strategic importance of such hubs for the transition
- Al has a key role to play –interfaces, big data, pattern recognition– but expertise will remain important both upstream (inputs) and downstream (outputs)
- Transition initiatives should be supported by information collection, organisation and interpretation
- The EPBD, among other regulatory frameworks, recognises this factor
- The link of such initiatives to market needs can support their long-term contribution of relevant and reliable data

Thank you for your attention!

www.builthub.eu

SUSTAINABLE PLACES 2024

Intro to BuiltHub and Building Stock Observatory Workshop "Building data hubs supporting energy transition"

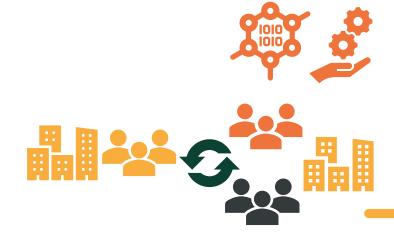

Ulrich Filippi Oberegger, project coordinator (Eurac Research)

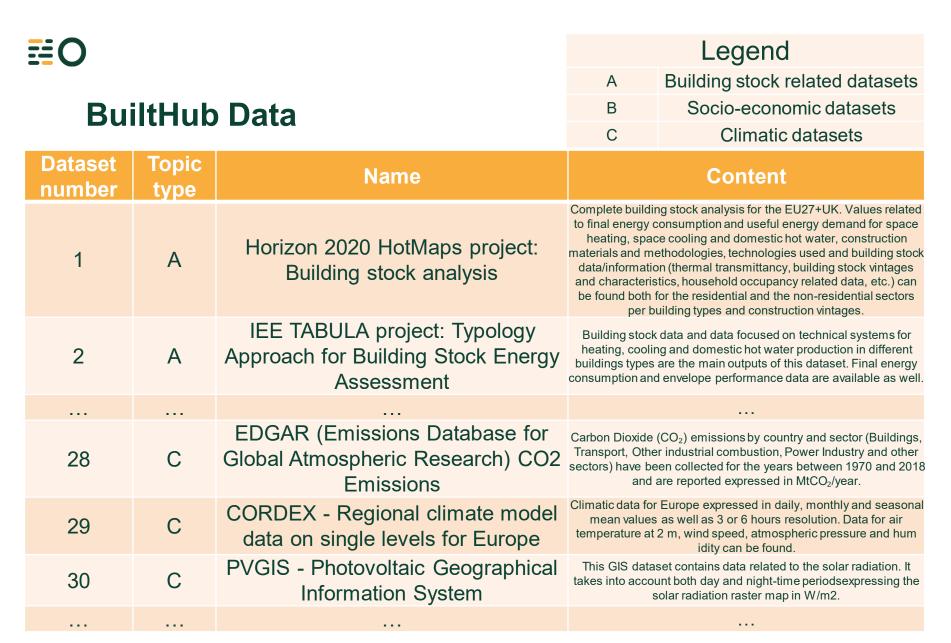
Contact me at: ulrich.filippi@eurac.edu

This project has received funding from the EU's Horizon 2020 program under grant agreement no 957026.

BuiltHub

BuiltHub in Brief


4 year-project, October 2020 - September 2024

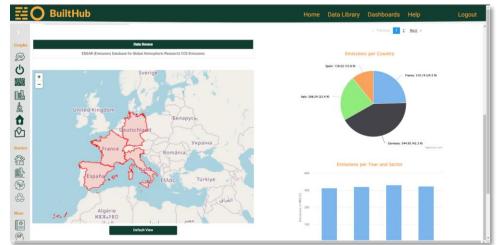

Main results

- Roadmap for constant data flow to EU Building Stock Observatory (BSO)
- Community for data collection, transformation, services
- Web platform offering data and services
- Coordinated action among associated projects
- Visit us at https://builthub.eu/

D3.1 Inventory structure and main feature and datasets https://builthub.eu/resource?uid=533

BuiltHub Platform

Check it out for free


https://platform.builthub.eu/

Monitor Building Stock Decarbonisation

Emissions dashboard

- Features
 - Track building sector emissions across countries and years
 - Compare against other sectors (industry, power, transport, other)
- Rationale
 - Mitigate climate change
 - Monitor alignment with European Green Deal targets
- Target stakeholders
 - Government agencies, to set regulations, provide incentives, and implement policies
 - International organisations, to track global trends and guide on emissions policy
 - Industry associations, to promote sustainable practices while maintaining competitiveness

Monitor Energy Consumption in Buildings

Energy dashboard

- Features
 - Segmentation of building sector by country, residential/services, building type, construction period, energy use
- Rationale
 - Increase energy resilience
 - Identify worst-performing buildings
 - Monitor alignment with European Green Deal targets
- Target stakeholders
 - Government agencies, to set regulations, provide incentives, and implement policies
 - International organisations, to track global trends and guide on energy policy
 - Energy companies and building owners/managers, to benchmark against their own portfolio

Indicate	or Name	•	ector		Building Type	Co	nsumption Type	Tithiy	Unit
Gro	EU28	Austria, Beigium, Croatia, German	Countries y, Greece, Ireland, Italy, Netheri	ianda, Portugal, Sweden	•		Period		
Country	NUTS	Indicator Name	Period	SIEC	Sector	Building Type	Consumption Type	Value	Unit
Portugel	PT	Total Final Energy Consumption	2016-2016		Residential Sector	Appertment Blocks	Space Heating+Domestic Hot Was	11	Tilih/yr
Portugal	PT	Total Final Energy Consumption	2016-2016		Service Sector	Hotels And Restaurants	Space Cooling	0	Tilkh/yr
Sweden	58	Total Useful Energy Demand	2016-2016		Residential Sector	Total	Space Heating+Domestic Hot Wat	51	Tith/yr
Sweden	52	Total Useful Energy Demand	2016-2016		Service Sector	Total	Space Cooling	2	Till/yr
Portugel	PT	Total Useful Energy Demand	2016-2016		Service Sector	Total	Space Cooling	4	Tilihiyr
Italy	r	Total Final Energy Consumption	2016-2016		Service Sector	Health	Space Heating+Domestic Hot Wat	4	Tillh/yr
Germany	08	Total Final Energy Consumption	2016-2016		Service Sector	Health	Space Heating+Domestic Hot Wat	19	Tilihiyr
Ireland	e	Total Final Energy Consumption	2016-2016		Residential Sector	Appertment Blocks	Space Cooling	0	Tillh/yr
Germany	DE	Total Useful Energy Demand	2016-2016		Service Sector	Other Non-Residential Buildings	Space Heating+Domestic Hot Was	11	Tithtyyr
								1 to 9 of 4	10 IC C Page 1 of 45
		Data Source				Energ	y Consumption per Coun	try	
Horizon 2020 Hothlapa p	roject: Building stock e	nalysis			4,000	3,515.3	8		

Track Census Data

Census dashboard

- Features
 - Number of buildings and dwellings by location and construction period
 - From NUTS* 0 (national) to NUTS 3 (small regions) level
- Rationale
 - Relate emissions and energy consumption to figures per building/dwelling
 - Allow unit-normalised assessment of energy/emissions performance across the years
- Target stakeholders
 - Regional government, to assess the scale of energy efficiency and decarbonisation programs in different regions
 - Building sector professionals, to assess market size targeting buildings of a specific construction period

	Coun	try	Country	NUTS	NUTS LVI	Indicator Name	Building Type	Period	Value
ohs	France, Germany, Portugal, Spain, Sweden, U	nited Kinodom	United Kingdom	UKE21	3	Conventional dwellings in residential buildings		1900-1919	20.130
_		-	Germany	DE13A	3	Conventional dwellings in residential buildings		1900-1919	9.952
3	Grou	ps	United Kingdom	UKH14	3	Total number of dwellings		1900-1919	50,305
	EU27	EU28	Germany	DED44	3	Buildings built before 1919	Buildings	1900-1919	23,098
			Germany	DE600	3	Conventional dwellings in residential buildings		1900-1919	120,095
	Periods	NUTS Level	Germany	DEA46	3	Not stated		1900-1919	0
			United Kingdom	UK631	3	Not stated		1900-1919	0
	1900-1919, 1919-1945, 1946-19 👻	3 .	Germany	DE91A	3	Conventional dwellings in non-residential buildings		1900-1919	217
			Germany	DE918	3	Buildings built before 1919	Buildings	1900-1919	7,617
			Germany	DES04	3	Conventional dwellings in non-residential buildings		1900-1919	65
	Building Type	Indicator Name	Germany	DEF05	3	Buildings built before 1919	Buildings	1900-1919	8.910
ies	autoning type	indicator Hame	Germany	DE408	3	Not stated		1900-1919	0
			Spein	85620	3	Total number of dwellings		1900-1919	24.400
la la								1	I< < Page 1 of 1516 ≥
2								1101201100	it the page for formation of
						Buildings per	Gaurdan		
ð,		Data Source				Buildings per	Country		
	ZENSUS 2011								number of buildings
è	National Housing Census: European statistic	al System				Portugal: 2,692,910.00 (1.47%)			
						Sweden: 8,303,130.00 (4.54%)			
e						France: 10,646,258.00 (5.82%)	Germany: 85.	405,579.00 (45.71%)	
					United	d Kingdom: 31,649,945.00 (17.31%)			
	- Isi	and j	Norge Finland			Spain: 44.151.910.00 (24.15%)			

Compare Two Datasets

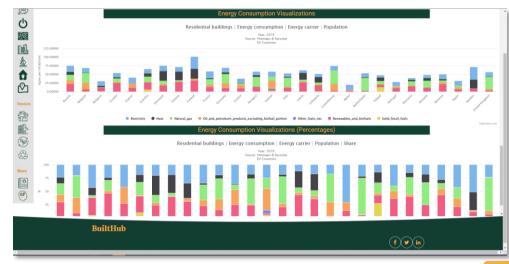
Comparison dashboard

- Features
 - Compare two datasets on the same subject
- Rationale
 - Assess dataset reliability
 - Quantify uncertainty
- Target stakeholders
 - Data providers, to validate their own data
 - Analysts and researchers, to check the reliability and quantify the uncertainty of the data; to spot errors or outliers

	Country	NUTS	Indicator Na	Sector	Year	Value	Unit	Count	V NUTS	Indicator	Sector	Topic Type	Year	Value	Unit	
phs	Austria	AT	Space heating unit o	TOTAL	2008	4,995	kWh/individual	Austria	AT	Final Energy Conc	Residential Secto	Space Heating	2016-2016	4,102	kWh/im2/yr	•
pus	Belgium	86	Space heating unit o	TOTAL	2008	5.755	kWh/individuel	Belgium	86	Final Energy Conc	Residential Secto	Space Heating	2016-2016	6.162	kWh/m2/yr	
3	Bulgaria	86	Space heating unit o	TOTAL	2008	1.677	kWh/individuel	Bulgerie	BG	Final Energy Conc	Residential Secto	Spece Heating	2016-2016	2,218	kWh/m2/yr	1
	Cyprus	CY	Space heating unit o	TOTAL	2008	1.223	kWh/individuel	Croatia	HR	Final Energy Conc	Residential Secto	Spece Heating	2016-2016	3.788	kWh/im2/yr	
2	Czechie	CZ	Spece heeting unit o	TOTAL	2008	4,266	kWh/individual	Cyprus	CY	Final Energy Conc	Residential Secto	Space Heating	2016-2016	1.450	kWh/m2/yr	
l.	Denmark	DK	Space heating unit o	TOTAL	2008	6.066	kWh/individuel	Czechie	CZ	Final Energy Conc	Residential Secto	Spece Heating	2016-2016	4.153	kWh/im2/yr	
5	Estonia	88	Space heating unit o	TOTAL	2008	4.037	kWh/individuel	Denmark	DK	Final Energy Conc	Residential Secto	Spece Heating	2016-2016	3.626	kWh/m2/yr	
	Finland	P1	Space heating unit o	TOTAL	2008	5.603	kWh/individuel	Estoria	55	Final Energy Conc	Residential Secto	Spece Heating	2016-2016	5.569	kWh/m2/yr	
_	France	FR	Space heating unit o	TOTAL	2008	5.246	kWh/individual	Finland	FI	Final Energy Conc	Residential Secto	Space Heating	2016-2016	4,375	kWh/m2/yr	
ካ	Germany	oe	Space heating unit o	TOTAL	2008	5.221	kWh/individuel	France	FR	Final Energy Conc	Residential Secto	Spece Heating	2016-2016	4.663	kWh/m2/yr	
- I	Hungery	HU	Space heating unit o	TOTAL	2008	3.444	kWh/individuel	Germany	CE.	Final Energy Conc	Residential Secto	Space Heating	2016-2016	3.957	kWh/m2/yr	
ries	iteland	it.	Space heating unit o	TOTAL	2008	4.126	kWh/individual	Greece	e.	Final Energy Conc	Residential Secto	Spece Heating	2016-2016	3.305	kWh/m2/yr	
	Italy	IT	Space heating unit o	TOTAL	2008	2,616	kWh/individual	Hungery	HU	Final Energy Conc	Residential Secto	Space Heating	2016-2016	3,449	kWh/m2/yr	
۲ ۲	Latvia	LV .	Space heating unit o	TOTAL	2008	4,533	kWh/individual	Ireland	it it	Final Energy Conc	Residential Secto	Space Heating	2016-2016	3.652	kWh/im2/yr	
	Lithuania	σ	Space heating unit o	TOTAL	2008	4,001	kWh/individual	Italy	IT	Final Energy Conc	Residential Secto	Spece Heating	2016-2016	3,619	kWh/m2/yr	
	÷	Sector			riginally had a measu		dw. To archive the new		ndicator Name	-	Sec	tor	1 to 15	of 28 K K P Topic		
2 **	TOTAL		This n ENTR	ew calculation is r	made dividing the sp) a calculation is need bace heating consump sons in a household p	ption of IEE	Final Energy		▼ Res	idential Sector		• Sp	ace Heating		·
2	7,500		Consu	umption per C	ountry			7,500			Consumption	per Country				

Investigate Raster Data

Geo information dashboard


- Features
 - Displays raster data across Europe
 - Displays markers for various layers
- Rationale
 - Explore raster data such as solar irradiance
 - Show geographical distribution of markers such as energy infrastructure and emissions hotspots
- Target stakeholders
 - Government agencies responsible for energy policy, to guide infrastructure investments
 - Regional planners, to identify areas with high potential for renewable energy

Identify Renovation Potential

Renovation dashboard

- Features
 - Building energy consumption by country, construction period, end use (space heating, space cooling, domestic hot water), and fuel (electricity, heat, gas, etc.)
- Rationale
 - Identify energy conservation measures targeted to specific building stock segments
 - Extract building characteristics from construction period
 - Pre-retrofit baseline, necessary to quantify post-retrofit energy and emissions savings
- Target stakeholders
 - Government agencies and policy makers, to formulate policies and incentives aimed at reducing energy consumption in buildings
 - Real estate managers, to benchmark their building's performance against similar buildings and make informed decisions about energy retrofits

Renovation Potential in 3 Belgian Towns

Be Reel! project

- Features
 - Building types, construction period, number of buildings, floor area, energy consumption, and energy saving potential in three Belgian towns, at district level
- Rationale
 - Identify town- or district-specific energy conservation measures by building stock segment
- Target stakeholders
 - Urban planners and city officials, to optimise energy infrastructure, identify areas of high energy consumption, and prioritise retrofits
 - Building owners and managers, to benchmark their building's performance against similar buildings and make informed decisions about energy retrofits

ML for Swedish Renovation Strategies

- Features
 - Enrich building databases with building features (building type, façade material, eave overhang) extracted from images from Google Street View
 - Build decision tree determining the retrofit
- Rationale
 - Identify building type
 - Identify feasible energy retrofit option depending on building type and features

û

⊘

N/A values were generated if one or more of the features in the pr

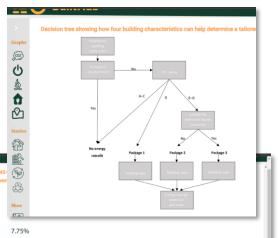
Fower blocks

Panel blocks

Othe

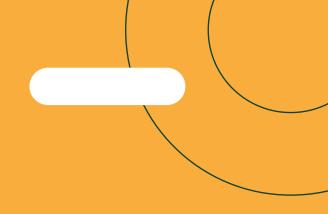
N/A

Slab blocks, 1960-1975 40.2%


Slab blocks, 1945-1960 28.8%

18.5%

3.10%


1.61%

- Identify energy saving potentials and associated costs
- Target stakeholders
 - Building owners, to identify suitable retrofit options and respective energy savings and costs
 - Financial institutions, to assess costs and risks

Based on the models shown before, building type and possibility for additional insulation could be predicted for the entire multifamily building stock buil between 1945 and 1975. First of all, it can be seen in the predicted distribution of building types that almost all of the multifamily buildings from this era can be categorised as slab blocks (69%). N/A values were generated if one or more of the features in the prediction model were missing.

BSO

BSO in Brief

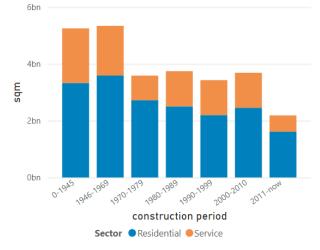
"Web tool to monitor the energy performance of buildings across Europe"

- Factsheets
- Database

Visit the BSO at https://energy.ec.euro pa.eu/topics/energyefficiency/energyefficient-buildings/eubuilding-stockobservatory en

EU Building Stock Observatory

> European Commission

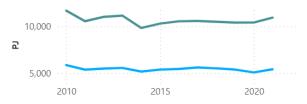

Factsheets

Country	
EU27	\checkmark

1. Building Stock

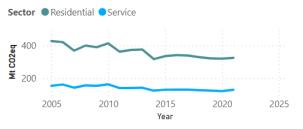
	Buildings	Floor area (sqm)
	2020	2020
total	111.58M	27,229M
residential	101.47M	18,408M
services	10.11M	8,821M

*Occupied stock (primary and secondary residencies) Source: MODERATE project


Useful floor area by sector and construction period in the year 2020 (for residential occupied building stock only) Source: MODERATE project

EU27

2. Energy Consumption and GHG Emission


In 2021, final energy consumption was at 10941.66 PJ in residential sector and 5420.89 PJ in services sector.

Sector Residential Service

Final energy consumption in residential and services sectors Source: Eurostat

In 2021, direct emissions due to fossil fuel use were at 324.74 Mt CO2eq in residential sector and 129.90 Mt CO2eq in services sector.

Direct GHG emissions in residential and services sectors *Source: EEA*

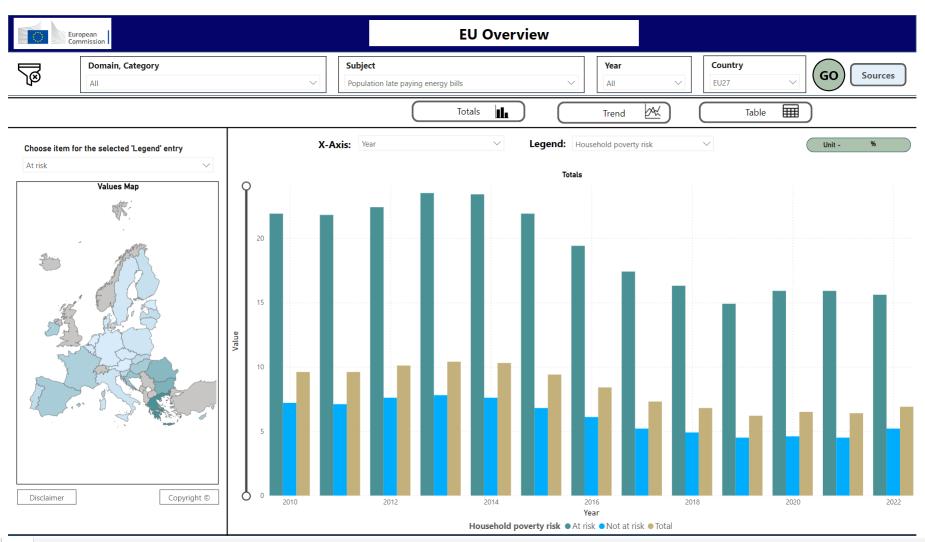
Factsheets

3. Social Aspects

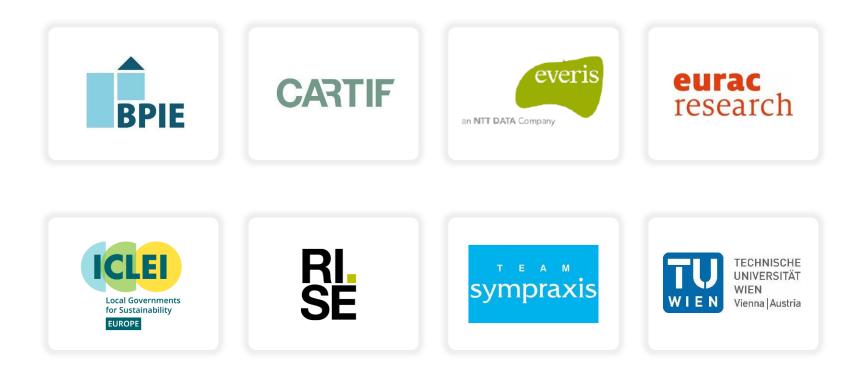
In 2022, 6.9 % of the total population was having arrears on their utility bills while 9.3 % was not able to keep their home adequately warm over the cold periods of the year. In 2020, about 14.8 % of total population was living in a dwelling with leaking roof, damp walls or rotten windows, frames or floor.

4. Energy use in households

In 2021, households consumed 64.4% for space heating, 14.5% for domestic hot water, 0.5% for space cooling, 13.6% for lighting and electric appliances and 5.9% for cooking.


Final energy consumption in households by end-use *Source: Eurostat*

Dwelling with


Source: Eurostat SILC

Database

BuiltHub Consortium

