

DATA-DRIVEN SMART BUILDINGS WORKSHOP

25 September 2024, 14:00 – 17:30

European Convention Center, Luxembourg & Online (Hybrid)

Extended session with 2 intertwined topics: Data Models and Interoperability & Services for Advanced Energy Efficiency

DATA-DRIVEN SMART BUILDINGS WORKSHOP

25 September 2024, 14:00 – 17:30

European Convention Center, Luxembourg & Online (Hybrid)

Extended session with 2 intertwined topics: Data Models and Interoperability & Services for Advanced Energy Efficiency

LUXEMBOURG INSTITUTE OF SCIENCE AND TECHNOLOGY REM

DATA-DRIVEN SMART BUILDINGS WORKSHOP

25 September 2024, 14:00 – 17:30

European Convention Center, Luxembourg & Online (Hybrid)

Extended session with 2 intertwined topics: Data Models and Interoperability & Services for Advanced Energy Efficiency

Funded by the European Union

Semantic models for scalable and portable smart building applications

25 September 2024

Flavia de Andrade Pereira, UCL Prof Dimitrios Rovas, UCL

Agenda

- Overview on portability of applications and semantic models
- **DigiBUILD** tools to extend existing ontologies and create semantic models
- **BuildON** architecture leveraging semantic models for portable applications
- Demonstration

Portability of applications: plug-and-play, the ideal goal

Mobile industry

Current practice is not scalable!

© Pritoni - LBNL, 2022

Why is developing portable applications so hard?

- Heterogeneity
 - Data sources with various formats, vendors, protocols
 - Custom design of systems

Lack of syntatic (technical) interoperability

- Data silos and spaghetti arrangement (ad-hoc, point-to-point integration)
- Partially addressed by standard communication protocols (e.g., BACnet, Modbus..)

Lack of semantic interoperability

<plant>

<u>Krantaz. 2010</u>

- The "meaning of the data" (metadata) is not easily interpretable
- Metadata are described by informal, customised, ambiguous point names (labels, graphics, docs..)

What can we do? Where can we improve?

Standalones Services...

© Pritoni - LBNL, 2022

How to improve semantic interoperability?

- **Semantic models** are data models that structure, represent, and add context and meaning to data.
- Built on ontologies:
 - define concepts based on standard class structure and relationships
 - formal, well-defined, precise language
 - shared understanding among different systems and users

Build_{ON}

6

Ontology-based data access (OBDA)

- Standard, consistent and easily discoverable data points
- Unified data access and self-configuration
- Reduce costs, rely less on human expertise and increase scalability

ISU **DigiBUILD**

DigiBUILD tools to extend existing ontologies and create semantic models

Prof Dimitrios Rovas, UCL

Funded by the European Union

About DigiBUILD

High-Quality Data-Driven Services for a **Digital Built Environment** towards a **Climate-Neutral** Building Stock

- Call: "Advanced data-driven monitoring of building stock energy performance"
- Partnership: 17 organisations from 11 Countries (Coordinator: ENG,IT)
- 10 Pilots (mix residential and non-residential)
 - Cluster 1: Building Performance
 - Cluster 2: Buildings vs Infrastructure Smart Management
 - Cluster 3: Policy & Finance

Challenge

Ontology Development

-

the second of

Quantitative Module

the second -

Temporal Module

Knowledge Graph Network

Pilots' BIM model (e.g., Revit)

DigiBUILD

Semantic Enrichment: Geometric Relationship Checker (GRC)

Geometric relation: Clash → Semantic relation: Connectivity

Geometric relation: Containment → Semantic relation: Containment

Air

Unit

Geometric Relationship Checker (GRC)

terminals

VAV

box

Semantic Enrichment: Energy Model Generation for Digital Twins

DigiBUILD Data Integration Middleware

Actor-base microservices framework

Modules

D Projects

Modules

■ Stop ► Start

RDF ETL Modules: Knowledge Graph Generation

Semantic Validation & Completeness Checking

- Validate the **semantic completeness** of the RDF knowledge graphs
- SHACL (SHApes Constraint Language) takes the RDF graph and the SHACL Shapes
- Validation Engine (i.e., Pyshacl) returns a validation report including errors.

Semantic Validation & Completeness Checking

- For example, every :Point must have exactly one :TimeseriesReference
- Essential for the **integration** static and dynamic data
- Automated semantic validation for thousands of points
- Ensure semantic completeness for each knowledge graph

ဤ DigiBUILD					: ۵
Pilots Modules	Modules $ ightarrow$ Knowledge Graph	Validation			
Users Cloud Integration Web Services Message Brokers	BIM Store File Scheduler Globel Prope	BMS	DATA MANAGEMENT	QUERIES	SYSTEM
Settings Actors Files	Endpoint Listener Output 1	File Selector	SHACL Validator Store File		
Tags Types Connectors		Globel Property Output 1	Input 2		

BuildON architecture leveraging semantic models for portable applications

Flavia de Andrade, UCL

BuildON overview

Affordable and **digital** solutions to Build the next generatiON of smart EU buildings, focusing on **replicable** building applications.

- Call: "Smarter buildings for better energy performance"
- Partnership: 20 organisations from 9 Countries (Coordinator: CARTIF,ES)
- 5 Pilots (mix residential and non-residential)
- 11 Monitor, Assess, Predict and Optimise (MAPO) services/applications

Software architecture

Crowe et al., 2020

Foundation to create components that support **portability of applications..**

- Unified data access and contextualisation Enhanced interoperability (technical and semantic) Easy integration of new data sources Real-time response and data storage
- Security and privacy
- Reliability and fault tolerance
- Continuous logging for audit trails and root cause analysis

1.

2.

3.

4.

5

BuildON architecture

Domain Controller (DC) and Cloud Controller (CC)

- Extensible interfaces, device-agnostic operations and multiple protocols
- Dynamic configuration and automated discovery (metadata)

23

Data resilience (local storage during connectivity loss)

BuildON

Data **BuildON** architecture Data Access and Control Manager (DACM) Abstraction level of data needed for Data Repository Repository Universal API DC Abstraction Level of data Datapoints needed for Connector Pilot Sensors CC Data connector DACM Topic : pilot1 Payload : Datapoint1 DATA REPOSITORY DC Datapoints Sensors Pilot Data logger Data process Topic : pilot2 Payload : Datapoint2 Kafka MQTT Connector Broker Broker CC Topic : pilot3 Payload : Datapoint2 Data broker Configuration Datapoints DC Sensors Pilot Data connector Pilot-Gateway Metadata Abstraction (pilot-level topics, CC API common payloads) Edge DCs Cloud CCs Two-way communication with DCs/CCs Quality checks (alerts, writing

Co-funded by

protection)

BuildON

24

Co-funded by

BuildON architecture

Build <i>O</i> N			Add Connector				<u>م</u> :		
instances	Connectors		Name DACM				+ Connector		
Vodules	Name	Des	Description		🛞 Build <i>O</i> N				å :
Users Cloud Integration	DACM	DAC	DACM Katka Connector		🖇 Instances	Cloud Integration Message	Brokers RabbitMQ		
Settings Actors Files	Properties		KAFKA (Sateway) BACenet/P (Sateway) KAFKA (Sateway) Modbus RTU (Sateway)	2 CLOSE	 Modules Users Cloud Integration Web Services 	Connection 88.87/c545-2028- Name RabbitMQ Usemane openInk	115c 926a 589244124b12	Server on 74450 de lans generaland net	Inactive Attine
Tags Types	project.alias		Modbus TCP (Gateway) Modbus TCP (Edge Device) MQTT.0 (Gateway)		Message Brokers				
Connectors	graph.url		ppc UA (Gateway) https://fuseki.openmetrics.eu/CORDIA			Channels Name	Queue		Actions
						COTORS	COTONA		×

Multiple data connectors

BuildON architecture

BuildON data repository

Modules Modules	PointComment	PointType	Measuremer	EquipmentComment	Equipmentk	EquipmentType	PointId							
🚨 Users	Power Factor (L3_PF)	Power_Factor_Sensor	28600	VRV 3 and 4	5917	Electrical_Met	BuildON				ė i	Ì		
 Cloud Integration Web Services 	Voltage L1-L2 (VL1-L2)	Voltage_Sensor	28611	VRV 3 and 4	5917	Electrical_Met	S Indanas	Modeles — Materiaria - Knowle	e Goyê Geresane		-			
Message Brokers	Active Energy (ph3)	Energy_Sensor	28604	VRV 3 and 4	5917	Electrical_Met	Modules Users	EN.	EME DATA REDITE	DATA MANAGEMENT	POTM			
Settings	Active Energy (ph3)	Energy_Sensor	28729	Indoor Electrical Charg	5922	Electrical_Met	Conductorymics Desings		Ha Solarson Englement Haufreds. Save So	web.				
	Active Energy (ph1)	Energy_Sensor	28627	VRV 1	5918	Electrical_Met			- agent cagest) - agent cagest) - agent	Serve Tile				
	Active Power (L3_AP)	Active_Power_Sensor	28572	VRV 1 and 2	5916	Electrical_Met			File Solector Population (Second Second Sec	ago legal 1 Soon File				
	Temperature	Temperature_Sensor	643	H9 - LoRa Sensor	394	Meter		Endpoint Unswer Colput 1	File Solector Input 1 Output 1 Input 1 Output 1 Input 1 Output 1 Input	son File				
	Voltage L1-L2 (VL1-L2)	Voltage_Sensor	28636	VRV 1	5918	Electrical_Met			File Solector Epolementilactor. Store Gr Input Overal I Input Overal I Input	sph Store File				
	Active Energy (ph1)	Energy_Sensor	28752	Indoor Electrical Charg	5923	Electrical_Met			File Selector Epigenet/Metantic_ Store Gr	sph Show File				
	Active Power (L1_AP)	Active_Power_Sensor	28745	Indoor Electrical Charg	5923	Electrical_Met			No belease LocationPacharterLe. Store to Input Output hput Output input	aph Shire File				
	Frequency (Fr)	Frequency_Sensor	28583	VRV 1 and 2	5916	Electrical_Met								
					П									
					\mathbf{V}									
	Heater	acouony unit								•	Mul	tiple d	ata cor	necto
	(I) -	PV	6							•	Met	adata	registr	v for
9-Q-8		country.	2					_	-			added		,

Universal Building API

stored via Repository

27

BuildON architecture

Universal Building API

28

Demonstration

For more information

For DigiBUILD: <u>digibuild@live.ucl.ac.uk</u>

For BuildON: buildon@live.ucl.ac.uk

Support and participating members of:

Acknowledgement: Members of the UCL Group K. Katsigarakis, G. Lilis, D. Mavrokapnidis, M. Wang

DigiBuild and BuildON project collaborators

DATA-DRIVEN SMART BUILDINGS WORKSHOP

Enhancing demand response and building management through Al-driven energy services

Efstathios Stamatopoulos (National Technical University of Athens) Elissaios Sarmas (National Technical University of Athens)

www.sustainableplaces.eu

Funded by the European Union

INTRODUCTION

- Energy transition
 - From fossil fuels to renewable energy
 - **Sustainable** energy systems
- Data and Al-driven energy services
 - Vast amounts of data
 - Demand Response and
 Management Systems in Buildings
- Technology's Role
 - Al as enabler
 - **Optimize** energy use in buildings
 - Reduce GHG emissions

Challenges

Current Energy Consumption in EU's **Residential** and **Building Sector**

Demand for Energy Flexibility

DEDALUS and **DigiBUILD**

😈 dedalus

Flexibility modeling for data-driven residential DR

- Building-level
- District level
- Virtual cluster of buildings
- Cross-commodity scenarios

Al-based data-driven services for the built environment

DigiBUILD

- Energy Profiling, Benchmarking and Forecasting
- Energy resource
 Management
- Enhanced Comfort and Well-being
- Renovation roadmaps
- Climate resilient buildings

Aggregated Flexibility

Issue without Device-Specific Data

Lack of detailed device-specific information and data makes it difficult to identify and quantify flexibility within a building. Solution

- Develop a hypothetical approach to construct an aggregated flexibility baseline load using building-level data.
- This baseline approximates electricity consumption and production in the absence of specific DR events.

Methodology Overview

Steps:

- **1.** Energy Prediction Model: Forecast energy consumption and production using a Long Short-Term Memory (LSTM) model.
- **2. Flexibility Definition:** Establish a baseline for expected energy patterns, including maximum and minimum flexibility.
- **3.** Comparison with Baseline: Identify deviations between predicted values and baseline to determine flexibility.

Data Collection

Building:

- Residential building in Wiener Neustadt, Austria.
- The building consists of two floors and for each floor there is a dedicated photovoltaic (PV) system supplying electricity.

Dataset:

- Energy consumption data
- PV production data

Duration:

Two years of hourly data

Weekday Analysis

Analysis for each day of the week to understand daily patterns.

Prediction Analysis

□ Visual comparison of predicted values with baseline and flexibility levels.

Baseline Calculation:

- Weekday analysis
- Establish a reference baseline by calculating the average energy consumption and production for each hour for all the corresponding weekdays over the past 30 days.
- This baseline represents the expected normal operating conditions without any demand response events.

Flexibility Levels:

- Weekday analysis
- Determine the potential range of flexibility by identifying the maximum and minimum energy consumption and production values for each hour for all the corresponding weekdays over the same 30-day period.
- These levels indicate the upper and lower bounds within which energy adjustments can be made, highlighting the building's potential for DR
 participation.

Flexibility Estimation (1/2)

Calculation of Energy Flexibility Indicators (EFIs) for each hour of the day

Flexibility Estimation (2/2)

Split the day in time intervals suitable for DR strategies and calculate EFIs for these time intervals

Peak consumption (hours) Off Peak consumption (hours) Peak Production (hours) Α B С **Off Peak Production (hours)** D $EFI_{peak,peak\ down} = \frac{\sum_{h \in A} (EFI_{down,con}[h])}{\# A},$ $EFI_{peak,peak\,up} = \frac{\sum_{h \in A} (EFI_{up,con}[h])}{\# A},$ A: hour ϵ peak consumption \cap peak production A: hour ϵ peak consumption \cap peak production $EFI_{offpeak,peak\,up} = \frac{\sum_{h \in B} (EFI_{up,con}[h])}{\frac{\#B}{2}},$ $EFI_{offpeak,peak\ down} = \frac{\sum_{h \in B} (EFI_{down,con}[h])}{\#B}$, **B**: hour ϵ off peak consumption \cap peak production **B**: hour ϵ of f peak consumption \cap peak production $EFI_{peak,offpeak\,up} = \frac{\sum_{h \in C} (EFI_{up,con}[h])}{\#C},$ $EFI_{peak,offpeak\ down} = \frac{\sum_{h \in C} (EFI_{down,con}[h])}{\#C},$ C: hour ϵ peak consumption \cap off peak production C: hour ϵ peak consumption \cap of f peak production $EFI_{offpeak,offpeak down} = \frac{\sum_{h \in D} (EFI_{down,con}[h])}{\#D},$ $EFI_{offpeak,offpeak\,up} = \frac{\sum_{h \in D} (EFI_{up,con}[h])}{\#D},$ D: hour ϵ off peak consumption \cap off peak production **D**: hour ϵ off peak consumption \cap off peak production

Welcome, ssarantinopoulos

7 days

< A Homepage	Dedalus Flexibility Assessment Tool Selected Country: Greece Selected Option: Aggregated
 Homepage Select Country Data Insertion Flexibility Model 	 Selected Country Greece Selected Option: Aggregated Select Model Insert Data Select Flexibility Time Range Select Flexibility Time Range 1 day 2 days 3 days 4 days 5 days 6 d NEXT BACK Calculate Flexibility

SUSTAINABLE PLACES 2024

While the model is training, he is presented with some data analytics on the uploaded dataset.

NILM (Non-Intrusive Load Monitoring)

Disaggregation of the total household energy consumption into individual appliance usage without requiring intrusive sensors on each device.

- Models Used: Factorial Hidden Markov Model (FHMM), Combinatorial Optimization (CO).
- Identification of Flexible Devices

House266 - Site Meter and Appliances (Log Scale)

		Appliances									
	Houses	TV	A/C	Dish Washer	Washer Machine	Washer Machine / Dryer	Dryer	EV	Freezer		
Number	28	29	23	10	19	3	3	2	1		

Enhancing Building Management through services for better-informed decision making

- Data-driven services for Energy Recourse
 Management
- Data-Driven Energy & Non-Energy Services for Enhanced Comfort and well-being
- Data-driven services for Renovation Roadmaps and Energy Efficiency Financing
- Services supporting Decision-Making under Uncertainty for Efficient and Climate Resilient Buildings

Services' Role in DigiBUILD

AI-based services for finer grained energy profiling and forecasting

Objectives:

- Building Demand Forecasting
- Advanced monitoring and Benchmarking
- □ RES Forecasting

Tools:

- ML Algorithms
- Neural Networks
- Transfer Learning
- Incremental Learning

DigiBUILD

AI-based services for finer grained energy profiling and forecasting

MLP NN Hierarchical Forecasting

- Hierarchical-level segmentation
 - Handles irregular time series data effectively
 - Adaptable to dynamic environments
- Advantages
 - Great **balance** between **accuracy** and **efficiency** in training time and resources.
 - **Better insights and decision-making** for energy management in complex buildings

AI-based services for finer grained energy profiling and forecasting

Energy Efficiency and HVAC Units Replacement in Office Buildings

- Scalable approach
 - User-friendly web-app
 - Integrated with BMS
- Monitoring & Benchmarking
 - Model User behavior and occupancy patterns
 - Real-time data **monitoring** and **visualization**
- Replacements Recommendations
 - Economic returns and energy savings

Data-driven services for energy resources management

The Smart Grid Example

Objectives:

- Flexibility Management
- Optimal Management of Flexible Loads
- District Heating Management
- □ E-mobility

Tools:

- Reinforcement Learning
- Gradient Boosting
- Optimization Algorithms
- Heuristic Algorithms

Data-driven services for energy resources management

Energy forecasting

- LightGBM
- Reinforcement Learning

Carbon Footprint Estimation

• Multicriteria Decision Analysis

Energy Resource Management

• Optimised custom NSGA-II

Decision-making under uncertainty tools for efficient and climate resilient buildings

Achievements

 Accurate Evaluation of Climate Resilience
 Comprehensive Understanding of Building Vulnerabilities

User-Friendly Analytical Tool

- Innovative and Detailed Scoring System
- Location-Specific Assessment
- ✓Intuitive Web-Based Tool

Decision-making under uncertainty tools for efficient and climate resilient buildings

DigiBUILD

- Assesses a building's ability to anticipate, prepare for, respond to, and recover from climate events.
- A dynamic weighting system based on climate exposure was developed, allowing for location-specific resilience assessments.
- Evaluates vulnerability in different domains of buildings' components (energy systems, building envelope, water systems, etc.)

KEY TAKEWAYS

- **Al-driven energy services** optimize energy use, cut costs, and enhance sustainability.
- **Smart building solutions** improve energy flexibility, resilience, and occupant comfort.
- EU projects like **DigiBUILD** and **DEDALUS** are pioneering the future of energy management by leveraging AI to tackle energy challenges in buildings.
- Adopting these innovations is critical for achieving the EU's 2050 zero-emission building stock target and enhancing resilience.

FUTURE IMPACT

- **Scaling smart technologies** will be crucial in achieving climate and energy goals.
- Al and data-driven solutions will revolutionize **energy management**, leading to more resilient and adaptive buildings.
- **Policy makers** and regulations play a vital role in accelerating the adoption of these innovations.
- The **next decade** will be pivotal in accelerating the adoption of these innovations across the EU.

DATA-DRIVEN SMART BUILDINGS WORKSHOP

Thank you!

Funded by the European Union

MODERATE

Marketable Open Data Solution for Optimized Building-related Energy Services

Leveraging shared knowledge to boost data-driven workflows

Services for Advanced Energy Efficiency 25.9.2024 - Workshop

Cristian Pozza Eurac Research

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No 101069834. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA

2

Drivers

• Needs:

- Data collection, Standardization (previous presentation)
- Complete, trusted high quality datasets
- Reliable data-driven services
- Interoperability

- Advanced data-driven services are there
- Still barriers are in:
 - sharing data with services
 - integrating services in organizations' workflows

MODERATE Approach

1. Define a sw pipeline

- Data collection, processing, standardization
- Synthetization and enrichment
- Interoperable data-driven services
- 2. Validate on real case studies
- 3. Make the pipeline adoptable by new stakeholders for their business, assets and needs
- 4. Share openly, to enable replication and adaptation to specific case

Sharing data with services

- In many situations, sharing data is an essential step:
 - Intra-company, i.e. mktg
 - External developers
- ... but confidentiality issues are a barrier

• To this end, data synthetization provides:

Standardized

dataset

- Scalability, bias reduction, variety & volume
- Cost savings
- Enhancing ML, integration with real data

Synthetic

data

User data

Data

service

- Privacy, data protection, facilitate storage and sharing
- ...but skills, effort, time needed

Data synthetization and sharing

• By a pipeline, ML models can be trained using different generative algorithms (GAN, conditional diffusion model, ...) and validated

- Making it possible to generate complete, coherent, high-quality synthetic datasets
 - Energy, IEQ and other relevant parameters
 - Static and dynamic data
 - Different level of data aggregation

Example (GAN)

REAL DATA

SYNTHETIC DATA

Example (CDM)

Synthetic Data Starting 03-15

Synthetic Data Starting 03-15

*

Can we make on-demand generator of synthetic data?

- Not really, because the generation depends on the input data and on the purpose for the model
- And a key priority when generating synthetic data is preserving the privacy of sensitive information while maintaining high utility in services

- ...but you can:
 - Use MODERATE pipelines and see them in action
 - Simply take MODERATE OS codes and documentation, then DIY

How predictive models can be improved

- AIM: identify a model that is able to predict the performance of building using a large EPC dataset?
- PROBLEM: high performance buildings (CLASS A, A+ old measurement scale) represent very low percentages compared to the entire dataset:
 - 1) Class A buildings : 3%
 - 2) Class A+ buildings: 0.5%.
- SOLUTION: Synthetize EPC of A and A+ classes using CTGAN*, generate 300,000 EPC in classes A and A+, -> integrate dataset as training in a NN model to predict building performance

* Modeling Tabular data using Conditional GAN, NeurIPS 2020 conference

How predictive models can be improved

Low

\$U-BASEMENT

Statistic analyis of U-value

filter data

≎U-WALL

\$INDEX

High

\$U-ROOF

U-WINDOWS

How quality checking of EPC can be improved

• Static models that are compared with the EPC introduced by the user

- EPC can also be compared with a synthetic dataset shared from public bodies
 - Cross-referencing with a comprehensive dataset
 - Greater adaptability to changing conditions
 - More accurate comparisons with real-time data

Data-driven services

- Fault detection and forecasting
- Energy system optimization
- ECM planning tool
- Solar PV tool
- Local Energy Communities

- M&V tool
- Benchmarking, geo-clustering
- De-risking for EE projects
- EPC quality and harmonization

Examples: 3rd party service provide

Building Automation Energy Data Analytics

Time series-based energy benchmarking

What challenges does this service address?

Static and pre-defined classes of comparison

Poor results since buildings in the same end-use category are heterogeneous and electric consumption is driven by different variables.

Use of aggregated data such as bills

This prevents understanding the causes of sub-optimal performance.

• Dynamic identification of similar buildings

Identification of the set of buildings against which compare a new building considering feature extraction processes and data analytics techniques

Use of time series data for operational KPI calculation

Load shape pattern frequency, anomaly rate, load volatility, operational schedule efficiency

Real-time benchmarking

Promptly identification of sub-optimal performance with real-time updates.

Examples: 3rd party service provide

Building Automation Energy Data Analytics

Anomaly detection on building electrical load timeseries

What challenges does this service address?

- Usually performed on single dataset owned by the user
- The algorithm is not publicly available and the process not replicable on other datasets

- Opportunity to develop and deliver a standard process that is replicable across different buildings
- Offers an open testbed to perform anomaly detection according to user inputs on diverse buildings end uses

MODERATE marketplace

- All open datasets, services and sw pipelines at hand
- Programming environment (playground)
- Test-before-invest and Support to companies

Key takeaways

- Open datasets and data-driven services for energy and building sector
- A collaborative environment to boost services with realistic data
- Find out ML models and techniques for data synthetization on our communities on <u>GitHub</u> and <u>Zenodo</u>
- Marketplace launch: Q1/2025
- Want to contribute with your codes/data/services? <u>Contact</u>
 <u>us</u>

MODERATE

Marketable Open Data Solution for Optimized Building-related Energy Services

Thank you!

Follow us:

in

MODERATE-HE

https://moderate-project.eu/

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No 101069834. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA

DATA-DRIVEN SMART BUILDINGS dedalus WORKSHOP

Data-driven Residential Energy rier-agnostic Demand Response Tools and Multi-value Services

25 September 2024, 14:00 – 17:30

DEDALUS Ontology: Demand response and flexibility modelling for interoperability

José L. Hernández* & Susana Gutiérrez, CARTIF Marzia Mammina, Luca Vitale & Alessandro Rossi, Engineering

This project has received funding from European Union's Horizon Europe Research and Innovation programme under the Grant Agreement No 101103998

Content of the presentation

- Problem formulation: Interoperability challenges
- DEDALUS Methodology
- State of the art
- **DEDALUS** architecture
- DEDALUS ontology
- Use of the ontology
- Conclusions

Structural interoperability

ö dedalus

- Open and/or standard protocols to gather data
- Open and/or standard protocols to share data
- Define data exchange structures
- **Define languages and vocabularies**

Methodology

State of the Art

Ontology	Pros	Cons		
SAREF	smart appliances, systems, meters and spaces.A lot of extensions are available.	Not covering flexibility		
OpenADR	OpenADR protocol	other (more generic) concepts are missing.		
Brick	Focused on buildings.	Other concepts are missing.		
BIGG	Designed to represent multiple aspects of smart grid systems, based on SAREF, BOT, IFC).	Big size, difficult to follow, focused on Energy Performanc Certificates (although have extensions).		

Architecture for an interoperable demand response SUSTAINABLE PLACES 2024

dCO based ontology

🕹 dedalus

10

dCO based ontology – Matching entities

	dco:PropertyAffordance	NO
	dco:EventAffordance	NO
Thing description module	dco:ActionAffordance	NO
	dco:InteractionAffordance	NO
	dco:ThingDescription	NO
	dCO:Gateway	YES
	ssn:Sensor	YES
	dCO:Relay	YES
Devices module	saref:Meter	YES
	saref:Appliance	YES
	ssn:Actuator	YES
	s4bldg:Controller	YES
	dco:Device	YES
dCO sara madula	dco:Service	YES
	dco:property	YES
	dco:measurement	YES
	saref:unitOfMeasurement	YES
	om:volumeUnit	NO
	om:powerUnit	YES
Units of measurement module	om:areaUnit	YES
	om:energyUnit	YES
	om:electricUnit	YES
	om:temperatureUnit	YES

	dco:Space	YES
	dco:Room	YES
Puilding structure module	dco:Building	YES
building structure module	dco:Apartment	YES
	dco:Stairway	NO
	dco:Storey	YES
	dco:Hub	YES
Power electricity and heating flow module	dco:Storage	YES
Fower, electricity and reating now module	dco:Producer	YES
	dco:Consumer	YES
	dco:Slice	NO
	dco:FlexOffer	YES
Energy flexibility module	dco:Schedule	YES
	dco:FlexOfferProfileConstraint	YES
	dco:FlexOfferTariffConstraint	NO

dCO based ontology – Extensions

DEDALUS ontology – How using it

DEDALUS ontology – How using it

IoT NGSI agents Custom agent to represent DEDALUS ontology

Conclusions

- Interoperability is key
- Demand response and flexibility not yet fully explored
- Data management and sharing
- Making data accessible

ödedalus

Data-driven Residential Energy Carrier-agnostic Demand Response Tools and Multi-value Services

> José L. Hernández josher@cartif.es

Thank you!

DATA-DRIVEN SMART BUILDINGS WORKSHOP

25 September 2024, 14:00 – 17:30

European Convention Center, Luxembourg & Online (Hybrid)

Funded by The European Union

Data-driven Residential Energy Carrier-agnostic Demand Response Tools and Multi-value Services

Utilizing Social Sciences Framework for New Service Development in Advanced Energy-Efficient Buildings

25/09/2024 → Sustainable Places Conference, Luxembourg Christine Gritsch – Blueprint Energy Solutions

SMART

ena

This project has received funding from European Union's Horizon Europe Rese and Innovation programme under the Grant Agreement No 101103998

DEDALUS's Overarching Project Goal

Goal: Deploy a social, technological, and business framework to design and demonstrate an SSH-driven, multi-value, energy carrier-agnostic Demand Response (DR) ecosystem.

Focus: Optimize and manage automated DR in residential buildings.

Social Arm: Structured through the Social Science Framework (SSF)

Key Insight Areas:

- Behavioral change theories
- Motivation and behavioral economics
- Foundational pillars: Individual Context, Goal Setting, and Motivation

Objective: Bridge theoretical frameworks and applications to foster end-user engagement in DR **dedolus** Funded by the European Union

Social Science Framework

Social Science Framework

Applying Social Science Framework

Social Science Framework	Co-creation activities	SSH methodology
Individual context Beliefs, values, knowledge	Segmentation questionnaire	Persona definition
Goal Setting DR behaviour & acceptance targets	Barriers & drivers workshop activity	Q-methodology
Mativation	Nudging workshop activity	User testing Make Exercises
Incentives and choice environment	Incentives workshop activity	Focus group Scenario analysis

Workshop Methodology

- Designed workshops to assess factors within SSF regarding end users. Activities included:
 - O Q-Method to assess barriers and drivers to DR participation
 - Ranking task to assess relative importance of incentives for DR participation
 - Nudging activity to assess motivations & preferences regarding tools and services
- Output:
 - Understanding user motivation, preferences & needs
 - Recommendations for broader engagement strategy
 - Learnings & best practices for engaging end users

Dedalus pilot sites

Pilot 1 (Front Runner) O O

Flexibility pre-aggregation for buildinglevel energy community [OurPower, **GREENPOINT, BLUEPRINT, COMS | Wiener** Neustadt (Lower Austria) in Austria]

Pilot 6 (Multiplier) O

Decentralized Power2heat crosscommodity optimal heat vs electricity social housing flexibility aggregation [CENTRICA] Different locations in Ireland]

Pilot 5 (Front Runner) O

District-level DR for increasing community-level self-consumption while providing flexibility to local DSO [CINME, PEUSA, ROMUR | La Seu d'Urgell (Pyrenees) in Spain]

Pilot 4 (Front Runner)

Trading off comfort with energy consumption in DR programs for elderly people living in serviced apartments [ISRAA, DYNAME, UNIVPM, ENG | Treviso in Italy]

Fig. 1.4 Geographic span of DEDALUS's pilot cases

Pilot 2 (Front Runner)

Energy efficiency and DR optimal interactions between district heating and electricity networks in social housing [FællesBo, NEOGRID, ECG | Herning in Denmark]

O Pilot 3 (Front Runner)

Multi-value DR for multi-segments of residential energy (electricity and gas) consumers [HERON, DOMX, NTUA, ARC | Different locations in Greece]

Napoca in Romania]

Arid, desert, hot (BWh) Arid, desert, cold (BWk) Arid, steppe, hot (BSh)

Arid, steppe, cold (BSk)

Temperate, dry summer, hot summer (Csa)

Temperate, dry summer, warm summer (Csb)

Temperate, no dry season, hot summer (Cfa)

Completed workshops

Analysis

- Relative importance of incentives
- Motivations, profiles & needs
- Feedback on APPs

User motivation

nrof	ilee					
		-1	0	1	2	3
3. No point saving energy if it makes living uncomfortable	5. More inclined to join DR if neighbours also join	9. Lacks info to make informed decision about DR	6. Feels social pressure to appear environment conscious	1. Would compromise comfort to participate in DR	8. Understands how DR works & the benefits	11. Comfortab using smart devices & APF
	12. Lack info on DR participation & environment	10. Energy programs are hard to understand	15. Needs to trust personal info will not be shared	7. Saving energy is discussed within social circle	4. Likes technology that can be personalised	
		2. Home comfort is more important than saving energy	16. Important to understand energy data use	13. Would not participate without customisation option		
			14. Important to see how DR impacts environment			

	Ranking	Incentive
Ranking scores	1	Recognition & Rewards : Public acknowledgement for participation in newsletters, on websites, or at community events.
	2	Social Benefits : Inclusion in a community of like-minded individuals who are interested in sustainability and energy conservation.
	3	Community Contributions : The satisfaction of contributing to a community goal, such as reducing the local carbon footprint.
	4	Environmental Impact : Regular reports on the environmental impact of participants' actions, such as carbon emissions saved.
	5	Gamification : Participation in energy-saving challenges or competitions with leaderboards and progress tracking.
APP feedback Enhanced control & autonomy: The ability to manage and monitor energy consumption in real-time through apps or inline dashboards.		
¢ 2022 > 27.6 % mm / National and the second of the seco		 Participant Comments: Respective preview for money savings plot (along with the existing consumption illustration, for example in a different tab) Daily and weekly report as well (currently we have only the monthly plot) We should highlight the "savings" bar, instead of the consumption bar Notifications to the end-users to be able to view their weekly consumption bar (for example) or even mail notifications with an overall preview of their consumption To add the indication (kWh) in the top left corner Re-adjustment of the bar preview, for example, to illustrate the consumption of January in the middle instead of the left corner Different representations, for example, only of the percentage savings per month/week/day

Consumers segmentation and clustering of buildings for optimal DR planning: **Ouestionnaire circulation**

Questionnaire Segmentation - Flow chart

Analysis approach

- Collect Questionnaire Responses
- Group Responses strategically in Categories that assist the analysis
- If the population is large enough, proceed with respondent segmentation in meaningful groups
- Profile a persona per Pilot and per Segment by presenting its dominant answer for each question
- Draw insights to tailor the outreach campaign per

Questionnaire Segmentation

Visualization dashboards for

- segmentation
- profiling
- insights

Questionnaire Segmentation

Pilot Persona profile example

Each bubble relates to a question category

Conclusions

Provided insight into the motivations, profiles & needs

DR Then

Low

- Knowledge on effective incentives
- Feedback on APPs
- **Recommendations for increasing** consumer engagement and social acceptance
- **Recommendations Common project** themes & best practices

	Barriers and Drivers: Common Themes
ncentives: Common s Value of Community d Social Benefits	 Barrier: A significant barrier across all workshops was the lack of information Driver: Many users across pilot sites are knowledgeable
ronmental Impact	•Barrier: For some, discomfort with smart devices and applications •Driver: The ability to customize energy preferences and settings
est in Gamification	•Barrier: Trust issues •Driver: Transparent information about data management
on and Rewards	•Barrier: Comfort at home was a critical factor •Driver: Participants who were flexible and willing to compromise on comfort

Impact on Technical Outcomes

•Enhanced Software Architecture:

•The integration and analysis of social science goals has led to a more responsive and user-centered software architecture.

•Technology Enablers:

•Specific technology enablers were enhanced and focused to support social science objectives, such as improved user engagement.

•Al-Driven Service Design:

•Social science insights guided the development of AI-driven services, ensuring they meet user needs and foster engagement effectively.

Data-driven Residential Energy Carrier-agnostic Demand Response Tools and Multi-value Services

This project has received funding from European Union's Horizon Europe Research and Innovation programme under the Grant Agreement No 101103998

District heating energy management system for smart building energy use

José L. Hernández*, CARTIF

Pablo Marcos & Javier Martín, VEOLIA

Ignacio de Miguel & Fredy Vélez, Universidad de Valladolid

SUSTAINABLE PLACES 2024

9

DigiBUILD

DATA-DRIVEN SMART BUILDINGS WORKSHOP

25 September 2024, 14:00 – 17:30

European Convention Center, Luxembourg & Online (Hybrid)

Table of contents

- Background
- Digital twin definition for DHN
- Digital twin approach
- Application case
- Preliminary results
- Conclusions

the European Unior

Background

DigiBUILD – Vision and approach

DigiBUILD is aligned with the European Strategy for data and contribute to the development of an Energy Efficient Building Data Space

Cocreation methodologies (according to the European Bauhaus initiative) are applied

Gather and manage data in a proper and adaptable way (namely not to mobilise thousands of data but only the necessary data), in order to drive more robust, improved and consistent monitoring of building stock energy performance

the European Unior

<u>Di</u>giBUILD

Background

Europe building stock challenges

• Energy-efficient buildings through the Renovation Wave Strategy

• District heating plays important role in EU

• Optimisation techniques

DiaiRIIILD

Background

Current optimization approaches

- Treated as isolated silos
- Wighted sum functions
- Mathematical formulation
- Complex AI algorithms

Our approach

- Grey-box approach
 - Physics + data
- Reduction of computational load
- Simplified by an hybrid data-driven model

Digital twin definition

 "A digital twin is a virtual representation of an object or system designed to reflect a physical object accurately. It spans the object's lifecycle, is updated from real-time data and uses simulation, machine learning and reasoning to help make decisions" [1]

[1] https://www.ibm.com/topics/what-is-a-digital-twin

[2] Kang, Ji-Soo & Chung, Kyungyong & Hong, Ellen. (2021). Multimedia knowledge-based bridge health monitoring using digital twin. Multimedia Tools and Applications. 80. 1–16. 10.1007/s11042-021-10649-x.

Digital twins definition

They allow to...

- Simulate different conditions
- Optimise the operation
- Visualise the current status of the network
- Understand behavioral patterns (historical data)
- Forecasting energy resources

Digital twin approach

DigiBUILD

Application case

- **Demand nodes** (20 buildings w/ one substation each):
 - 1 tower + 19 blocks: substation w/ storage, interchanger and pumping
- **Production nodes** (boilers' room + PV façade):
 - Boilers' room: 3 boilers + variable flow pumping system
 - PV façade: PV panels in tower
- Distribution system (3 circuits):
 - Circuit 1: 7 blocks
 - Circuit 2: 4 blocks

• Circuit 3: 1 tower + 8 blocks

Application case

Preliminary results

DigiBUILD Home Optimization History log out Funded by the European Union

SIMULATION RESULTS

	Element	Heat losses (W)	Pressure losses (Pa)		
	circuit1	4968.49	5602.29		
। ଜୀ	circuit2	4974.30	7594.14		
	circuit3	4963.34	4432.21		
	producers-0-forks-0	11293.01	411.69		
	forks-0-consumers-0	1806.56	16974.97		
പ	forks-0-consumers-1	1806.56	16974.97		

Element	Circuit 1 inlet temp (°C)	Circuit 2 inlet temp (°C)	Circuit 3 inlet temp (°C)	Circuit 1 return temp (°C)	Circuit 2 return temp (°C)	Circuit 3 return temp (°C)		
producers-0	130.00	130.00	130.00	118.26	118.52	118.03		
forks-0	129.31	129.41	129.22	118.88	119.05	118.74		
consumers-0	129.09	129.22	128.97	119.09	119.22	118.97		
consumers-1	129.09	129.22	128.97	119.09	119.22	118.97		
Boiler circuit			Pump power	Pump power (W)				
circuit1			3.92					

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Climate, Infrastructure and Environment Executive Agency (CINEA). Neither the European Union or the granting authority can be held responsible for them.

Copyright © 2024 Fundación Cartif. All rights reserved

Conclusions

- Digital twin as a way for the optimization of energy resources
- Application of AI is enhanced by using contextual data
 - Grey-box approaches
- Potential for improvements in the energy management
- Need of infrastructure digitalization
- Users should be the core

DATA-DRIVEN SMART BUILDINGS WORKSHOP

25 September 2024, 14:00 – 17:30

European Convention Center, Luxembourg & Online (Hybrid)

DigiBUILD

digibuild-project.eu linkedin.com/showcase/DigiBUILDeu

twitter.com/DigiBUILDeu

José L. Hernández, CARTIF josher@cartif.es

Thank you!

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor CINEA can be held responsible for them.

Al-based analytics and control services to monitor, assess, predict and optimise building performance

Sofía Mulero-Palencia, CARTIF

SUSTAINABLE PLACES 2024 WORKSHOP: DATA-DRIVEN SMART BUILDINGS 25 SEPTEMBER 2024, LUXEMBOURG

Contents

- 1. Motivation
- 2. Smart building technologies
- **3**. The Smart Transformer Toolbox
- 4. MAPO services
- 5. Conclusions

1. Motivation

2. Smart Building Technologies

- Lack of **user-friendly** solutions
- Technological knowledge gap

- Need for seamless integration of SW and HW
- Relevance of interoperability and standardisation

INTEGRATION NEW TECHNOLOGIES

- AI/ML for energy management and optimisation
- Digital Twins for real-time monitoring and control

1. MOTIVATION

2. SMART BUILDING TECHNOLOGIES

3. THE SMART TRANSFORMER TOOLBOX

4. MAPO SERVICES

5. CONCLUSIONS

Sustainable Places 2024: Sofía-Mulero Palencia, September 2024

3. The Smart Transformer Toolbox

Co-funded by the European Union

Sustainable Places 2024: Sofía-Mulero Palencia, September 2024

3. The Smart Transformer Toolbox

PLACES 2024

3. The Smart Transformer Toolbox

1 HOW TO IMPACT ON THE BUILDING

- Integration of advanced technologies
- Increased levels of automation
- Increased levels of Smart Readiness
- Adaptability to the needs of stakeholders and the environment

2 HOW TO FOSTER WIDESPREAD ADOPTION

- Technology harmonisation, resource sharing > archetypes •
- **Standardised** solutions

VEMEN I SRI DOMAINS	HEATING 34% 29% 37%	DHW 29% 28% 30%	COOLING 11% 0% 18%	VENTILATION 7% 0% 12%	LIGHTING 50% 42% 56%	ELECTRICITY 26% 32% 22%	EV CHARGING 14% 21% 9%	MON & CONTROL 45% 69% 28%
SRI IMPRO	E. EFFICIENCY 36% 35% 36%	E. FLEXIBILITY 33% 46% 24%	COMFORT 33% 24% 40%	CONVENIENCE 40% 44% 37%	HEALTH 36% 31% 9%	MAINTENANCE 42% 23% 55%	INFORMATION 53% 48% 55%	* GLOBAL RESIDENTIAL TERTIARY

Al-analytic services

	Building Energy Assets Monitor & Benchmark	HEATING	DHW IMP	VENTILATION CTS	ELECTRICITY	MONITORING EV CHARGING		
	Building Energy Fingerprinting	 Building energy profiling Data-driven forecasting capabilities. Operation and maintenance for anomaly detection 		E. EFFICIENCY	COMFORT E. FLEXIBILITY	CONVENIENCE	MAINTENANCE	INFORMATION

1. MOTIVATION

2. SMART BUILDING TECHNOLOGIES

3. THE SMART TRANSFORMER TOOLBOX

4. MAPO SERVICES

5. CONCLUSIONS

Co-funded by the European Union

Sustainable Places 2024: Sofía-Mulero Palencia, September 2024

SRI DOMAINS

VEMEN I SRI DOMAINS	HEATING 34% 29% 37%	DHW 29% 28% 30%	COOLING 11% 0% 18%	VENTILATION 7% 0% 12%	LIGHTING 50% 42% 56%	ELECTRICITY 26% 32% 22%	EV CHARGING 14% 21% 9%	MON & CONTROL 45% 69% 28%
SKI IMPRO SRI IMPACTS	E. EFFICIENCY 36% 35% 36%	E. FLEXIBILITY 33% 46% 24%	COMFORT 33% 24% 40%	CONVENIENCE 40% 44% 37%	HEALTH 36% 31% 9%	MAINTENANCE 42% 23% 55%	INFORMATION 53% 48% 55%	* GLOBAL RESIDENTIAL TERTIARY

Al-analytic services

	Building Energy Assets - Advanced visualisations: monitoring and building performance Monitor & Benchmark - Benchmarking tailored to specific building categories				DHW IMP	VENTILATION	EV CHARGING ELECTRICITY	MONITORING
	Building Energy Fingerprinting	 Building energy profiling Data-driven forecasting capabilities Operation and maintenance for anomaly detection 		E. EFFICIENCY	COMFORT E. FLEXIBILITY	CONVENIENCE		

1. MOTIVATION

2. SMART BUILDING TECHNOLOGIES

3. THE SMART TRANSFORMER TOOLBOX

4. MAPO SERVICES

5. CONCLUSIONS

Co-funded by the European Union

Sustainable Places 2024: Sofía-Mulero Palencia, September 2024

SRI DOMAINS

SRI DOMAINS	HEATING	DHW	COOLING	VENTILATION	LIGHTING	ELECTRICITY	EV CHARGING	MON & CONTROL
	34%	29%	11%	7%	50%	26%	14%	45%
	29% 37%	28% 30%	0% 18%	0% 12%	42% 56%	32% 22%	21% 9%	69% 28%
SRI IMPACTS	E. EFFICIENCY 36% 35% 36%	E. FLEXIBILITY 33% 46% 24%	COMFORT 33% 24% 40%	CONVENIENCE 40% 44% 37%	HEALTH 36% 31% 39%	MAINTENANCE 42% 23% 55%	INFORMATION 53% 48% 55%	* GLOBAL RESIDENTIAL TERTIARY

Automation and control services

	ZZ
Assets Control Services - Energy assets control for H&C generation, enhanced management	
GOMFORT PLEXIBILITY - Flexibility for occupants and grid congestion management	FORMATION
1. MOTIVATION 2. SMART BUILDING TECHNOLOGIES 3. THE SMART TRANSFORMER TOOLBOX 4. MAPO SERVICES 5. CON	CLUSIONS

Sustainable Places 2024: Sofía-Mulero Palencia, September 2024

SRI DOMAINS

VEMENT SRI DOMAINS	HEATING 34% 29% 37%	DHW 29% 28% 30%	COOLING 11% 0% 18%	VENTILATION 7% 0% 12%	LIGHTING 50% 42% 56%	ELECTRICITY 26% 32% 22%	EV CHARGING 14% 21% 9%	MON & CONTROL 45% 69% 28%
SRI IMPACTS	E. EFFICIENCY 36% 35% 36%	E. FLEXIBILITY 33% 46% 24%	COMFORT 33% 24% 40%	CONVENIENCE 40% 44% 37%	HEALTH 36% 31% 39%	MAINTENANCE 42% 23% 55%	INFORMATION 53% 48% 55%	* GLOBAL RESIDENTIAL TERTIARY

Automation and control services

	User Comfort Optimisation Strategies	- Visual and IEQ comfort strategies for occupant wellbeing	MONITORIN EV CHARGIN ELECTRICIT LIGHTING VENTILATIOI DHW HEATING
	Assets Control Services	- Energy assets control for H&C generation, enhanced management	SRI IMPACTS
	Grid-Optimised Energy Flexibility	- Flexibility for occupants and grid congestion management	FORMATION AINTENANCE HEALTH DNVENIENCE COMFORT FLEXIBILITY EFFICIENCY
1. MO	DTIVATION 2. SMART B	UILDING TECHNOLOGIES 3. THE SMART TRANSFORMER TOOLBOX 4. MAPO SERVICE	S 5. CONCLUSIONS

SRI DOMAINS

VEMENT SRI DOMAINS	HEATING 34% 29% 37%	DHW 29% 28% 30%	COOLING 11% 0% 18%	VENTILATION 7% 0% 12%	LIGHTING 50% 42% 56%	ELECTRICITY 26% 32% 22%	EV CHARGING 14% 21% 9%	MON & CONTROL 45% 69% 28%
SRI IMPACTS	E. EFFICIENCY 36% 35% 36%	E. FLEXIBILITY 33% 46% 24%	COMFORT 33% 24% 40%	CONVENIENCE 40% 44% 37%	HEALTH 36% 31% 39%	MAINTENANCE 42% 23% 55%	INFORMATION 53% 48% 55%	* GLOBAL RESIDENTIAL TERTIARY

Automation and control services

	User Comfort Optimisation Strategies	- Visual and IEQ comfort strategies for occupant wellbeing	MONITORING EV CHARGING ELECTRICITV LIGHTING VENTILATION COOLING DHW HEATING
	Assets Control Services	- Energy assets control for H&C generation, enhanced management	
	Grid-Optimised Energy Flexibility	- Flexibility for occupants and grid congestion management	ORMATION NTENANCE HEALTH IVENIENCE OMFORT FFICIENCY
1. MOTIVATION 2. SMART BUILDING TECHNOLOGIES 3. THE SMART TRANSFORMER TOOLBOX 4. MAPO SERVICES 5. CONCLUSIONS			

SRI DOMAINS

4. MAPO services ²

HARMONISATION: ARCHETYPE-DRIVEN SERVICES

An archetype is a representative model capturing the essential characteristics and functionalities of energy assets within a specific domain

- **Tailored optimization:** efficient services customised for diverse building environments.
- Scalable solutions: adaptable across various configurations, ensuring wide applicability.
- Dynamic adaptability: robust solutions that adjust to evolving conditions and needs.

1. MOTIVATION

2. SMART BUILDING TECHNOLOGIES 3. THE

angle 3. THE SMART TRANSFORMER TOOLBOX angle

4. MAPO SERVICES

5. CONCLUSIONS

Sustainable Places 2024: Sofía-Mulero Palencia, September 2024

5. Conclusions

Overcoming barriers to Smart Buildings Technologies

- Foster widespread adoption
 - Digitalisation as a driver
 - Easy-to-use applications, enhanced participatory scenarios and training
 - Technology harmonisation, resource sharing
 - Increased levels of automation
 - Adaptability to evolving environment
- **Policies** promoting advanced automation and AI-based technologies
 - Standardised solutions

Thank you for your attention!

Co-funded by the European Union

SUSTAINABLE PLACES **2024**

buildonproject

info@buildon-project.eu

SOFÍA MULERO-PALENCIA, CARTIF

SUSTAINABLE PLACES 2024 25 SEPTEEMBER 2024, LUXEMBOURG

This Project is funded by the European Union under the EU Programme Horizon-CL5-2022-D4-01-03 under Grant Agreement Number: 101104141. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them.