

FACULTEIT INGENIEURSWETENSCHAPPEN

$ASiRE^2$

Assessment method and Selection instrument to Reduce Energy poverty and Environmental impact

Els Van de moortel

KU Leuven

ASiRE²

- Aim of the project
- Method and applications of LCA
- Further outlook

ASiRE²

- Aim of the project
- Method and applications of LCA
- Further outlook

Reduce

environmental impact and


energy poverty

Residential building stock

Feasible and affordable

Source: European Parliament Low-carbon strategy for 2050

Source: Energiearmoede Vlaanderen

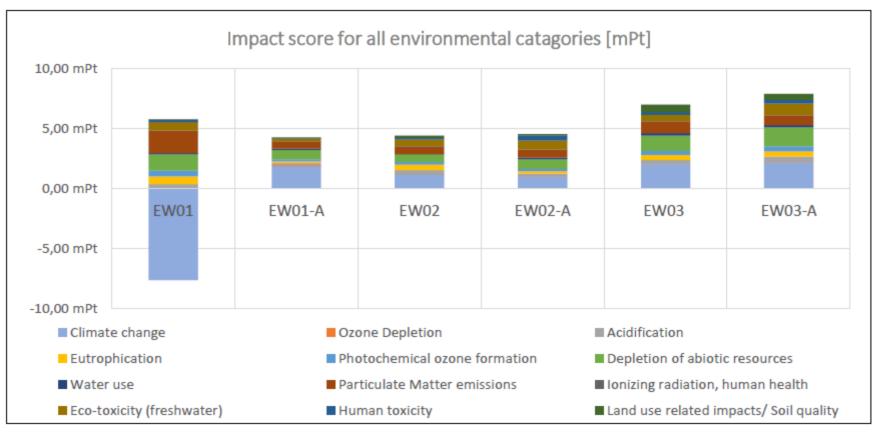
ASiRE² Aim of the project

 \rightarrow Integrate recent economic developments:

biobased, circular, collective and cooperative economy

 \rightarrow Test case social housing stock

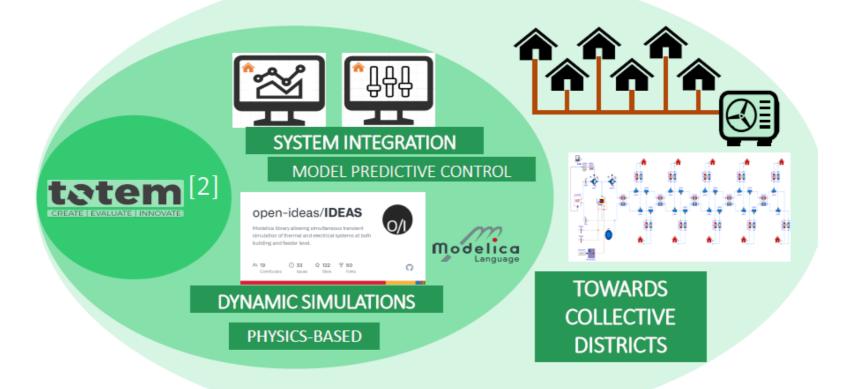
ASiRE²


- Aim of the project
- Method and applications of LCA
- Further outlook

ASiRE² Method and applications of LCA

Environmental LCA to assess

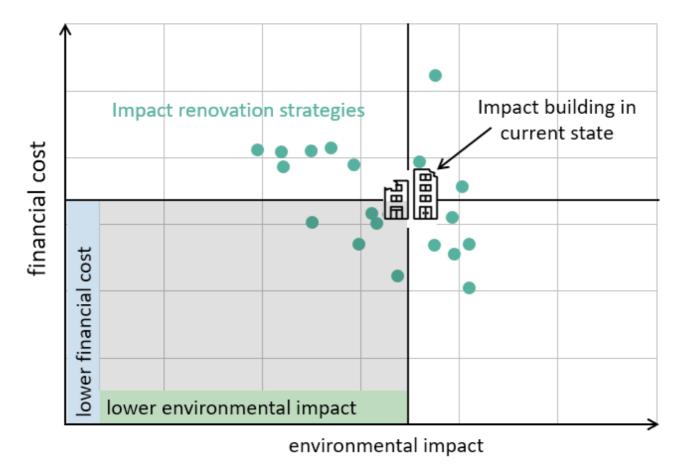
environmental impact of biobased materials


S. Brahma et al.; 2024; The risk of shifting environmental burdens in biobased construction - Life cycle assessment of a residential renovated building case study in Belgium

KU LEUVEN

ASiRE² Method and applications of LCA

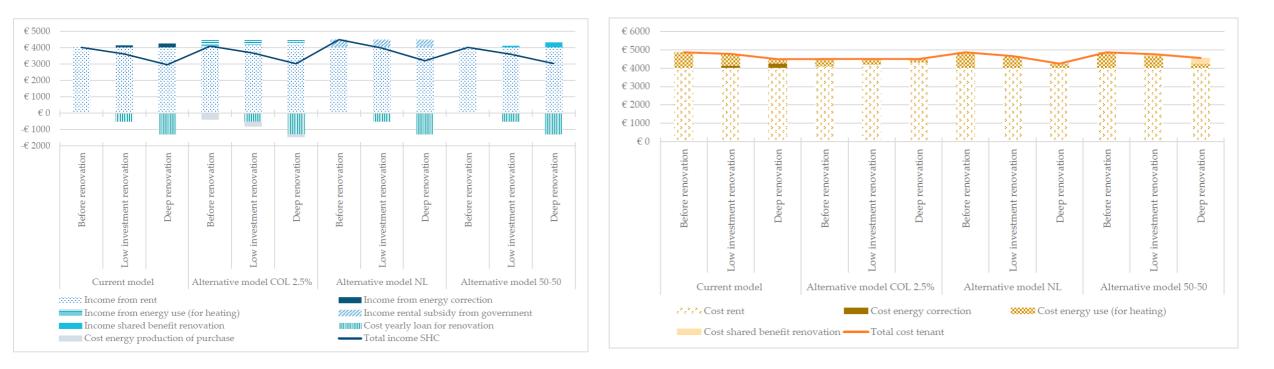
Environmental LCA to assess environmental impact of collective heating system



N. Adam et al.; 2023; LCA of Collective Districts Expansion Of A Tool To Guide Sustainable Renovations

ASiRE² Method and applications of LCA

LCA and LCC to assess efficiency and feasibility of renovation scenarios



E. Van de moortel; 2022; Development of a tool to guide sustainable renovation of social housing in Flanders

ASiRE² Method and applications of LCA

LCC to assess affordability of renovation for housing company and for tenants

E. Van de moortel E. and K. Allacker; 2024; To what extend could alternative economic models increase investment in the renovation of and reduce energy poverty in social housing in Flanders

ASiRE²

- Aim of the project
- Method and applications of LCA
- Further outlook

ASiRE² Further outlook

Internal funding KU Leuven → further develop research for application in practice Design and Engineering of Construction and Architecture, Leuven (Arenberg) Design and Engineering of Construction and Architecture, Sint-Lucas Brussels and Ghent Campuses Applied Mechanics and Energy conversion (TME), Leuven (Arenberg)

Looking for opportunities to collaborate

- EU projects
 - Green RenoV8
 - INDICATE
 - ...
- Policy support
- Collaboration with industry
-

KU LEUVEN

els.vandemoortel@kuleuven.be

REGENeration of neighbourhoods towards a low-carbon, inclusive and affordable built environment

The impacts of regeneration interventions

Calin Boje 24/09/2024

calin.boje@list.lu

Development of a catalogue of interventions for neighborhoods regeneration

- A catalogue of interventions that focus on increasing the well-being and economic prosperity of citizens in a low carbon, sustainable built environment
- Each intervention will be evaluated from multiple perspectives: qualified in terms of technical, operational, maintenance needs, performance, environmental impacts, and implementation costs -alignment with AFUR indicators

Regen interventions sample

	#	Interventions	Туре	Impact cat egories			
	11	Prefer multifamily houses to single (detached) houses - Spatial implications: Neighbourhoods layouts.					
Reduc e GH GE	12	Fuel switching for heating purposes (from oil, gas, to biomass, heat pumps, district heating) - Spatial implications: space needed for heat pumps in surroundings.					
	13	District heating network optimisation (renewable heat generation, distribution, connection of buildings) - Spatial implications: Land take for generation units I,					
	14	Conceive modular buildings according to Circular Economy principles - Spatial implications: New building typologies.					
	15	Deconstruct existing buildings by increasing reuse and high-value recycling, and reducing backfilling and waste - Spatial implications: storage on-site, sharing/re- use physical platforms occupy significant space.					
	16	Developing urban mining of materials and components for augmenting local re-use and recycling - Spatial implications: see 15 (platforms).					
	17	Reduce heat islands - Spatial implications: unseal built areas.					
Renat ire an I depl	18	Increase greens areas and deploy Nature-Based Solutions - Spatial implications: Less dense urban parcels, unseal built areas, use buildings and infrastructures (roofs, walls)					
y NB S	19	Unseal built parcels and/or monitor net-zero land uptake - Spatial implications: need for storage areas to re-use/recycle materials issued from unsealing.					
	110	Renovate low energy-efficient buildings. Spatial implications: increasing the renovation rate encompasses the need for more storage spaces of materials in cities. It affects the building envelope (dimensions/aesthetics) as well.					
	l11	Educate citizens on their energy use (deploying smart metering)	В	GHG, LS			
ener gy ise in	112	Deploy energy communities - Spatial implications: Renewable generation occupy the city space and landscape, space needed inside buildings for new machineries					
uildin gs	113	Upgrade smart readiness in buildings portfolios - Spatial implications: NA	P&R, T	ghg, PM, W			
	114	Install green roofs to regulate indoor air temperature and save energy, purify air, increase biodiversity, provide rainwater buffer - Spatial implications: plants archetypes to be regulated in planning laws.	P&R, I, E	GHG, PM, ES, L			

Task 2.5 AFUR methodology

aggr

and

Ē

definition of activities

Identify ways to quantify and compare impacts

Based on LCSA

- Environmental
- Social
- Costs

Applied on interventions

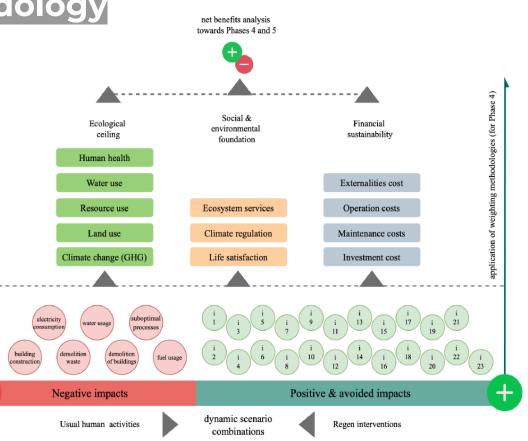
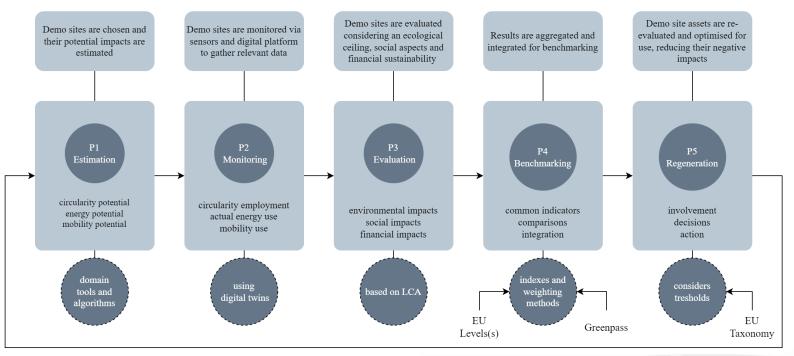


Figure 19 : Evaluation of REGEN Intervention Impacts

Task 2.5: Development and validation of the REGEN Assessment Framework for Urban Regeneration (AFUR): (M1-M18) LIST


• This task will develop and validate a framework for the assessment of the impacts of the urban regeneration interventions. AFUR defines the assessment process to be deployed at demo sites in several phases

REGEN's digitally supported framework for sustainable cities

A framework using BIM and digital twins in facilitating LCSA for buildings

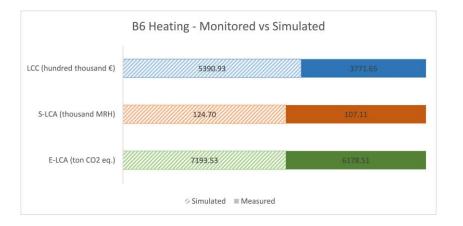
<u>Calin Boje A ⊠</u>, Álvaro José Hahn Menacho, <u>Antonino Marvuglia</u>, <u>Enrico Benetto</u>, <u>Sylvain Kubicki</u> , Thomas Schaubroeck, Tomás Navarrete Gutiérrez

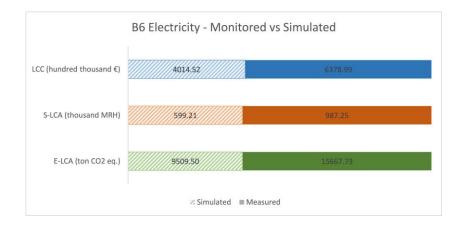
Show more 🗸

+ Add to Mendeley 😪 Share 🗦 Cite

https://doi.org/10.1016/j.jobe.2023.107232 🛪	Get rights and content $ abla$
Under a Creative Commons license 🛪	 open access

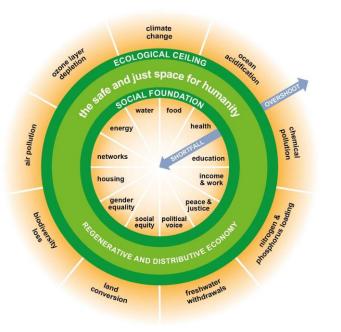
Highlights


- A review on the integration of life cycle assessment and building information modelling.
- A novel framework to include digital twins and building information modelling.
- The framework targets environmental, social and economic sustainability assessment.
- A case study on a real building is presented and discussed.
- Recommendations on digital tools to help support sustainability are highlighted.


- An example on a real building
- Including simplfied LCA, LCC and S-LCA
- We considered the building materials, energy and water usage (A1-3, B6, B7 of the EN 15978

Results of B5-B7

- Problem for Regen
 - Local scale should be considered (impacts on actual city occupants)
 - While costs and environmental impacts can be quantified, social impacts remain problematic



Alignment with Doughnut Economics

- We looked at different frameworks:
 - DGNB (buildings + districts)
 - LEED/BREEAM
 - WELL
 - GREEN PASS
 - Etc
- A mapping of indicators and doughnut economics already exists
- We tried to identify indicators related to social impacts
- An LCA-based methodology is not clear however

Overarching consideration impacts vs social gains

Environmental impacts of neighbourhoods											
Buildings									Mobility		
Constru	iction	Operation				End-of-life		Cons	Constr. & EoL Operation		ation
Materials Fu supply us	Energy use Use					Waste disposal	Intrastructures		Passengers transport <u>emiss</u> .		
	Nature-based solutions (NBS)							Others			
Construction		Operation			End-of-	life		Land	Lighting	Wa	ıter
Materials supply		ter Nutrients se & pest. use		outdoor emiss.	Wast dispos			and use	Energy use	Sewer constr.	Sewer use

▼								
Supply of services for the inhabitants and visitors								
	omes	Accessibility to services						
Indoor therm.	Indoor air	Sanita	Min.	Affor	Secure soft	Accessible	Proximity to	
comfort	quality	tion	space	dable	mobility	PT	key services	
Pleasant & safe neighbourhood								
Outdoor		Acoustic			Protected	Life	Local	
therm. comfort air quality comfort with natur					from floods	satisfactio	n economy	

Thank you

Get in touch for more information!

REGENeration of neighbourhoods towards a low-carbon, inclusive and affordable built environment

calin.boje@list.lu sylvain.kubicki@list.lu

Luxembourg Institute of Science and Technology (LIST)

@LIST_Luxembourg

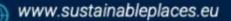
www.list.lu

Esch-sur-Alzette, Luxembourg

23-25 September 2024

Luxembourg

Life cycle sustainability assessment WORKSHOP


INSTITUTE OF SCIENCE AND TECHNOLOGY

Life cycle sustainability assessment Environmental and social applications of LCA in the built environment

REN

Agenda:

11:00 - Workshop Opening (Moderator: Calin Boje, LIST)

11:05 – IMMEC Project – Integrated Modelling Of Material Efficiency And Environmental Impacts Of Building Materials Cycles (Thomas Gibon, LIST)

11:15 - CIRCUSTAIN Project - Impact assessment of circular economy initiatives, with a focus on PVC in the construction sector (Nirvana Marting, LIST)

11:25 – MIRACLE Project – A transformative approach to engineer low-tech concrete and cement-based materials into high-performance functional photonic metamaterials (Nick Adams, KUL)

11:35 - REGEN Project - REGENeration of neighbourhoods towards a low-carbon, inclusive and affordable built environment (Calin Boje, LIST)

11:45 – ASIRE Project – LCA to reduce the energy poverty and the environmental impact of the residential building stock (Els Van de moortel, KUL)

11:55 - Brainstorming - Managing trade-offs with LCA, Integration of environmental and social LCA

12:25 – Closing remarks

THE ENVIRONMENTAL COSTS OF CLEAN CYCLES INSIGHTS FROM PROJECT "IMMEC"

<u>Thomas Gibon¹</u>, Sarah Schmidt², Tomás Navarrete Gutiérrez¹, and David Laner²

¹SUSTAIN Unit, **Luxembourg Institute of Science & Technology** 5 avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette Luxembourg

²Research Center for Resource Management and Solid Waste Engineering, Faculty of Civil and Environmental Engineering, **University of Kassel**, Mönchebergstraße 7, 34125 Kassel, Germany

September 24th, 2024

Credit: figures and slides by Sarah Schmidt

PROJECT "IMMEC" Integrated modelling of material efficiency and environmental impacts of building materials cycles

Principal investigators: Thomas Gibon (LIST, LU) and David Laner (University of Kassel, DE) Funding program and project period: Funded by FNR and DFG as a joint project Funding period: from 05/2022 – 08/2025

DFG Deutsche Forschungsgemeinschaft UNIKASSEL VERSITÄT Fonds National de la Recherche Luxembourg

LUXEMBOURG INSTITUTE OF SCIENCE AND TECHNOLOGY

	2
2	5

Future **climate change impacts** of the **plastics** industry can be reduced by enhanced **recycling**.

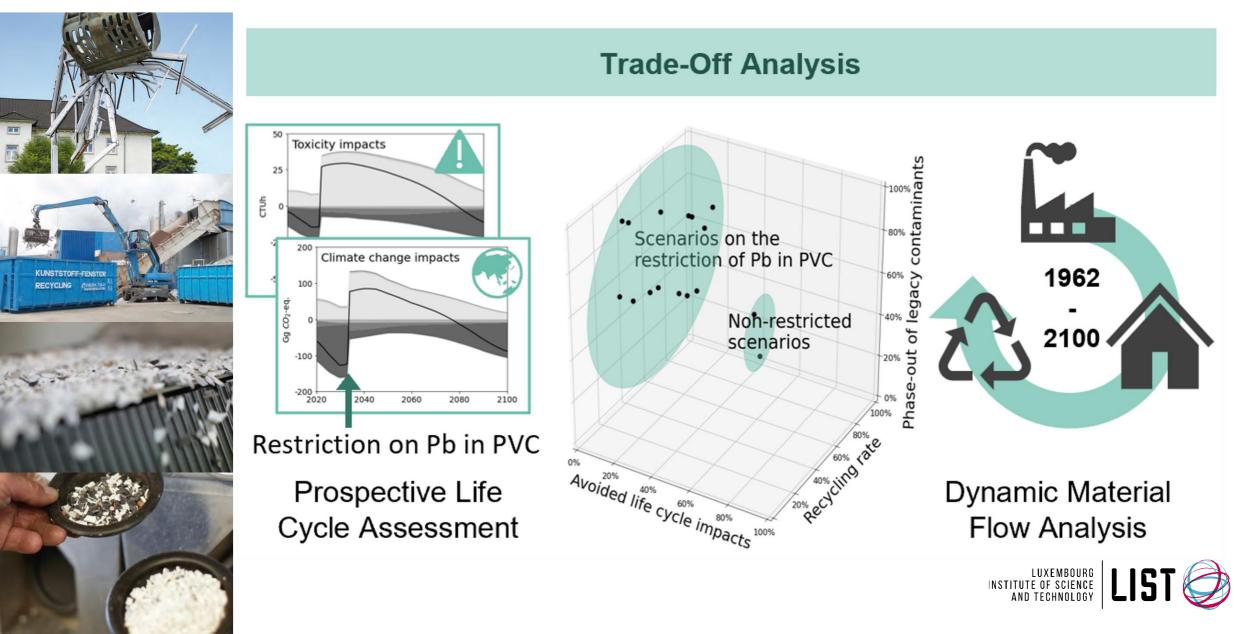
Bachmann et al. (2023) Towards circular plastics within planetary boundaries. Nat Sustain. doi:10.1038/s41893-022-01054-9

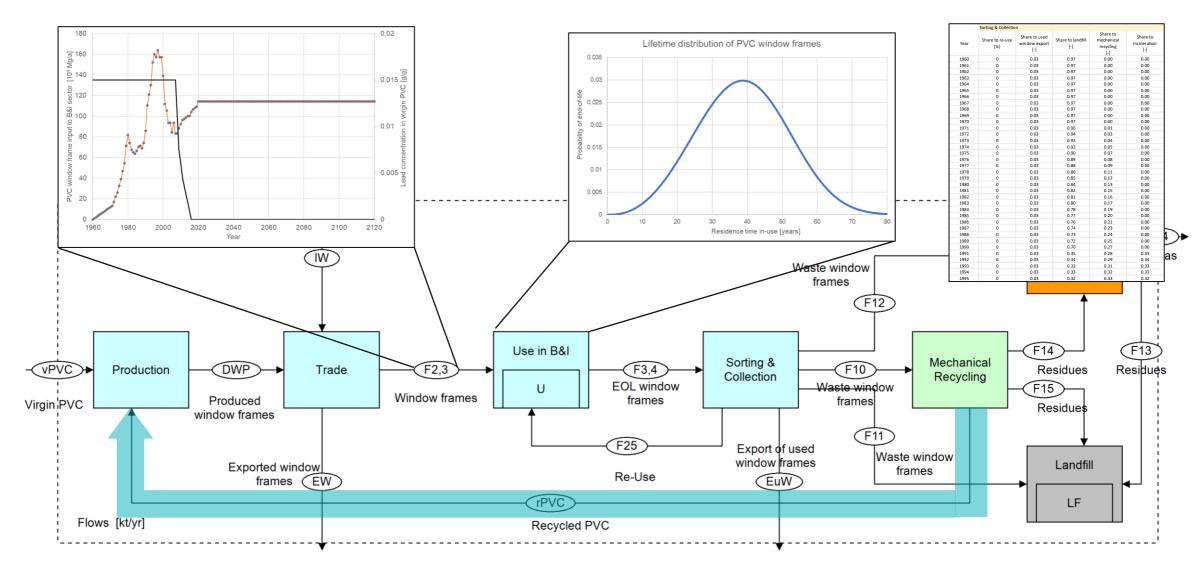
The presence of **legacy contaminants** is a significant **barrier** for more effective recycling markets.

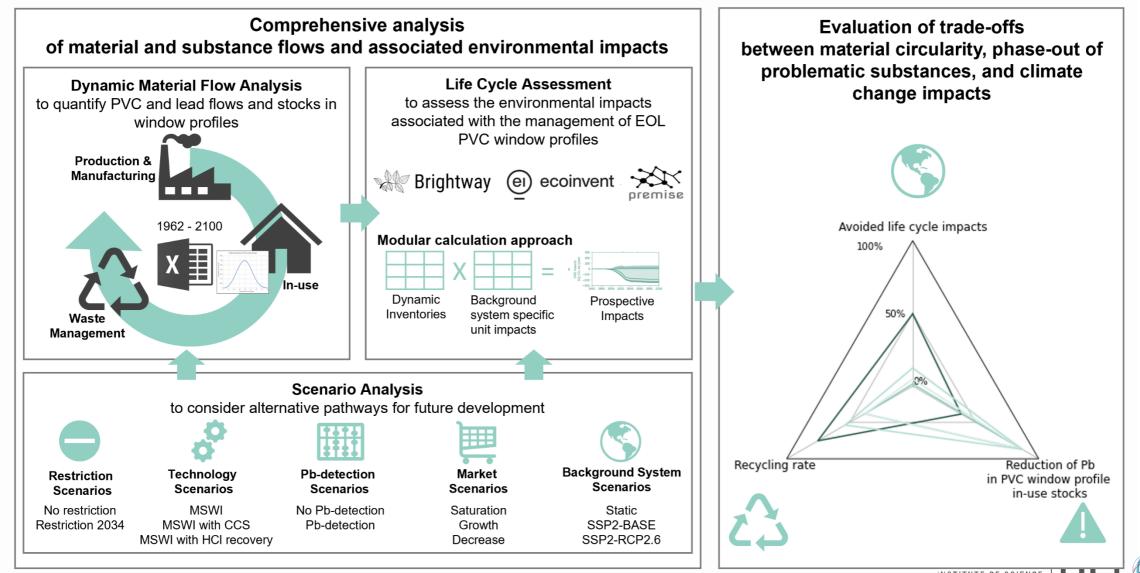
OECD (2018) Improving Markets for Recycled Plastics: Trends, Prospects and Policy Responses.

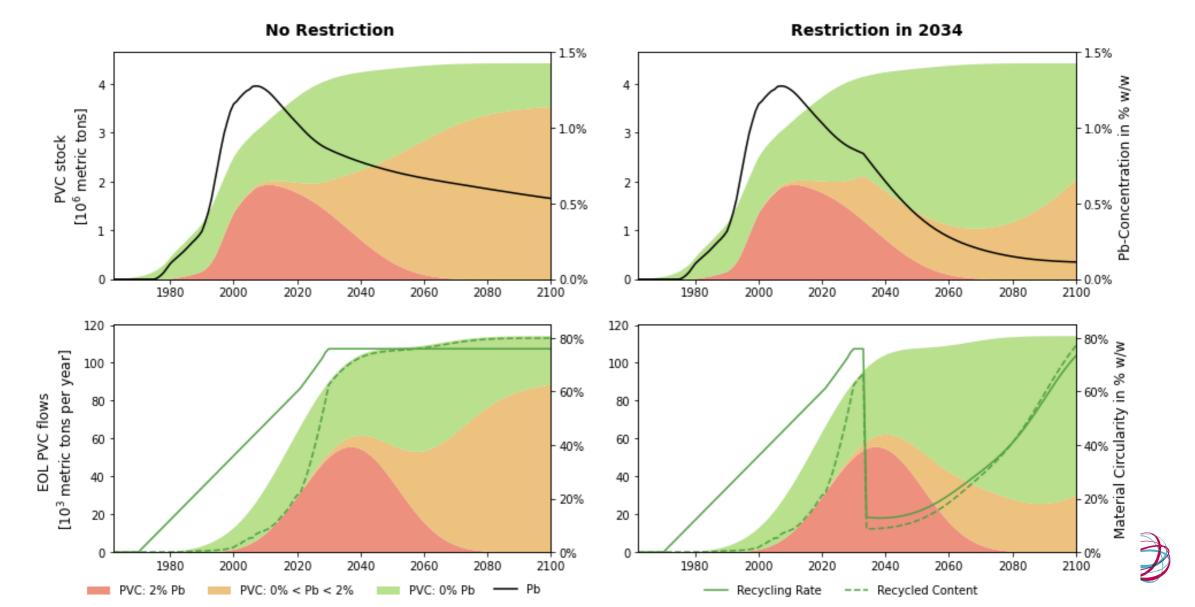
Products in the **building and infrastructure** sector are used over **long periods of time**.

Geyer et al. (2017) Production, use, and fate of all plastics ever made. Sci Adv 3(7). doi:10.1126/sciadv.1700782

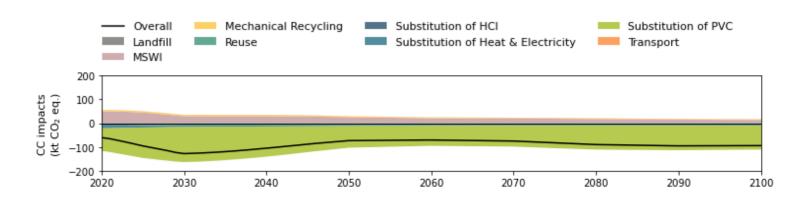




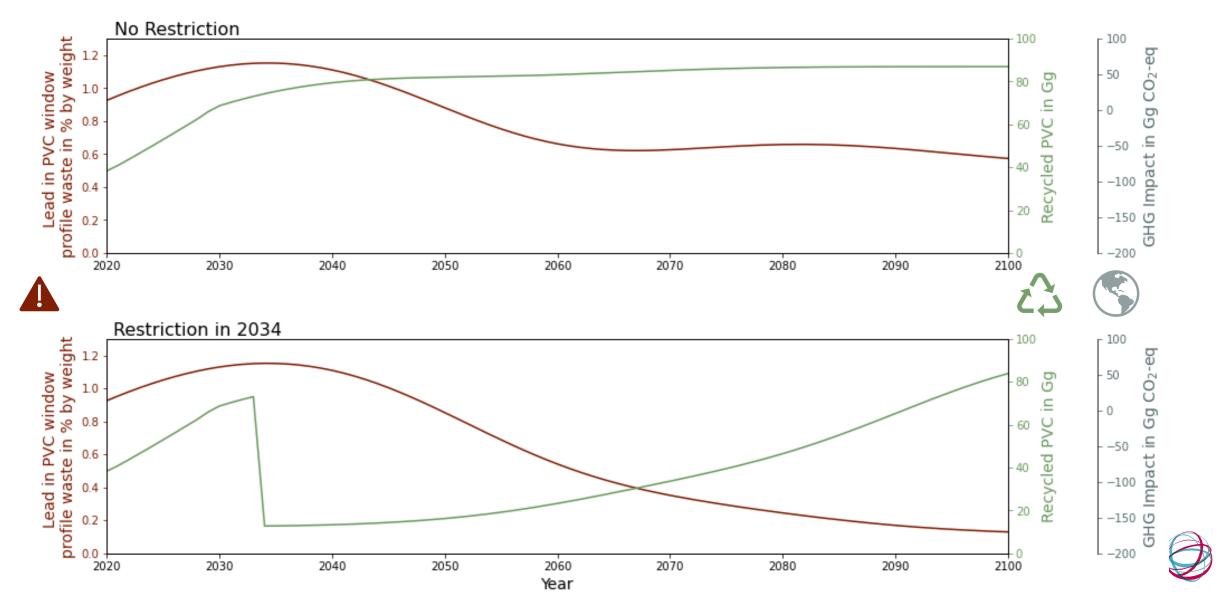

THE ENVIRONMENTAL COSTS OF CLEAN CYCLES: CASE STUDY


INPUT-DRIVEN DYNAMIC MATERIAL FLOW AND STOCK MODEL

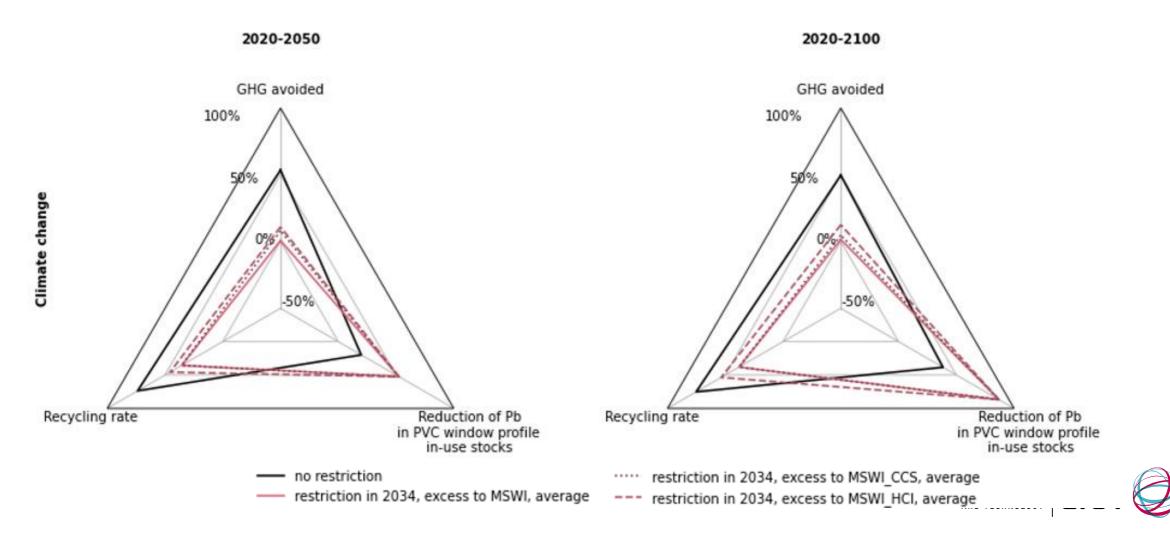
SCENARIO MODELLING



STOCKS AND FLOWS OF PVC WINDOW FRAMES Market scenario: saturation



ENVIRONMENTAL IMPACTS Climate change



EFFECTS OF A PB RESTRICTION IN RECYCLED PRODUCTS Threshold: 0.1% by weight 2034 (EU2023/923)

TRADE-OFF ANALYSIS Circularity, contaminant phase-out, and climate change impacts

Background system scenario: RCP 2.6, Market scenario: saturation

EOL PVC window flows are expected to increase by factor 1.7 between 2020 and 2050.

Pb will be present in EOL PVC window frames in concentrations above 0.5% for at least three more decades.

Restriction on Pb in new PVC window frames will limit future mechanical recycling.

Environmental impacts for different EOL PVC management scenarios with Pb restriction and without Pb restriction were assessed in view of changing background system conditions.

Assessment showed that alternative treatment pathways can mitigate the effect of excess PVC in mechanical recycling.

THANK YOU!

thomas.gibon@list.lu

THE ENVIRONMENTAL COSTS OF CLEAN CYCLES: CASE STUDY

Challenges & solution

Data access

Ideally we would extend the model to more European countries, accounting for trade

Data is not available in a similar format (or even incomplete)

Policy modelling

We test Pb restriction as a one-off intervention

How should we test various policy interventions (on more substances, with finer thresholds, ...), and which ones should we model in priority?

Future technologies

End-of-life treatment options are currently restricted to existing technologies

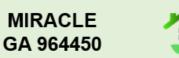
What approach should be adopted to model upcoming solutions (e.g. chemical recycling)?

Policy relevance

What results and interpretation could be further exploited for policymaking?

What needs could be foreseen, and how to adapt the model accordingly to maximize policy-relevance?

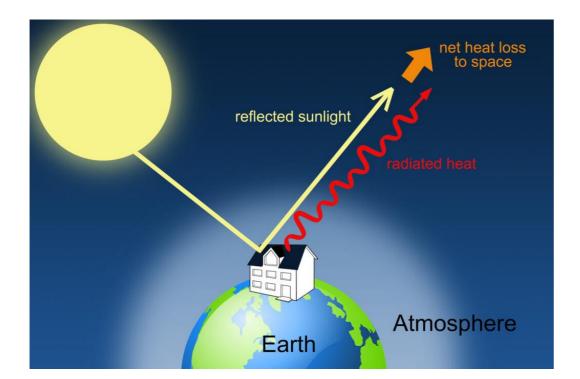
Photonic Metaconcrete with Infrared RAdiative Cooling capacity for Large Energy savings (MIRACLE)

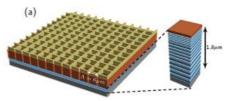

The integration and application of LCA in the H2020 Project MIRACLE

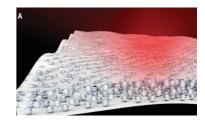
Event: Sustainable Places 2024, Luxemburg

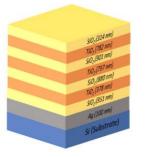
Date: 24/09/2024

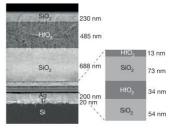
Author/Partner: KU Leuven




This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 964450.

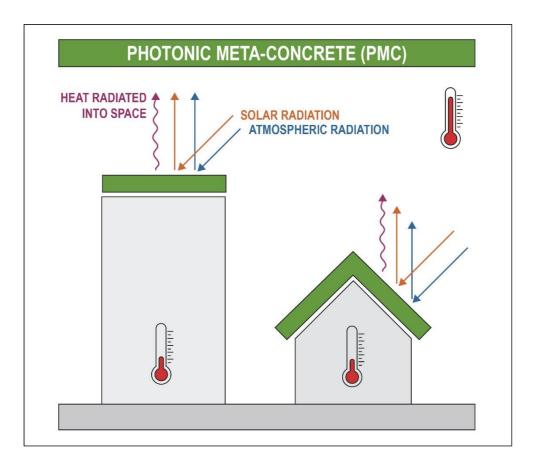

Radiative cooling materials

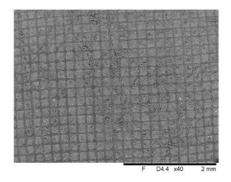



Rephaeli E, Raman A, Fan S (2013) Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett 13:1457–1461. https://doi.org/10.1021/nl4004283

Zhai Y, Ma Y, David SN, et al (2017) Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science (1979) 355:1062–1066. https://doi.org/10.1126/science.aai7899

Kecebas MA, Menguc MP, Kosar A, Sendur K (2020) Spectrally selective filter design for passive radiative cooling. Journal of the Optical Society of America B 37:1173. https://doi.org/10.1364/josab.384181




Raman AP, Anoma MA, Zhu L, et al (2014) Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515:540–544. https://doi.org/10.1038/nature13883

MIRACLE project

photonic Metaconcrete with Infrared RAdiative Cooling capacity for Large Energy savings

MIRACLE project

The MIRACLE Project has been broken down into 6 work packages (WP)

This WP1 Components

Identification of the most appropriate composition for cement-based materials to function as a radiative cooling material

WP2 Concrete

Optimization of hierarchical porous structures to design and fabricate concrete foams that exhibit low non-radiative heat loses and optimized radiative properties

WP3 Photonic Metaconcrete (PMC)

Computational and experimental demonstration of nanophotonic metaconcretes

WP4 Prototype

To design, build and test a prototype to provide the proof of concept and performance assessment of the PMC developed in previous work packages

WP5 Impact

This WP aims at assessing the impact of PMC technology and points to a twofold objective: On the one hand, a deep analysis on the environmental impact of the Photonic Meta-Concrete. On the other hand, an exploratory study about the possibilities of Meta-Concrete in other applications like solar cells and communication technologies.

WP6 Management, Dissemination, Exploitation and Communication

This WP comprises the organization of MIRACLE, its scientific coordination and administrative management, and dissemination & exploitation & communication strategies

Cradle-to-gate environmental impact assessment of:

- The components and the mixtures of MIRACLE
- Extisting radiative cooling materials

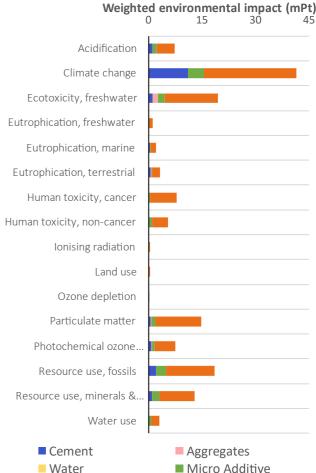
Life cycle assessment of prototype and final mixtures, taking into account:

- Production process
- Construction
- Use phase
 - Positive (and negative) impact energy use of buidlings (Building simulation)
 - Possitive (and negative) impact on the urban heat island and climate change (climate modelling)
- End of life

WP5 Impact

- Research topics
 - Environmental impact MIRACLE and state-of-the-art radiative cooling materials
 - Effect of cooling potential on buildings (reduction energy use for cooling)
 - In starting phase
 - Urban heat-island mitigation
 - Climate change mitigation (radiative forcing)

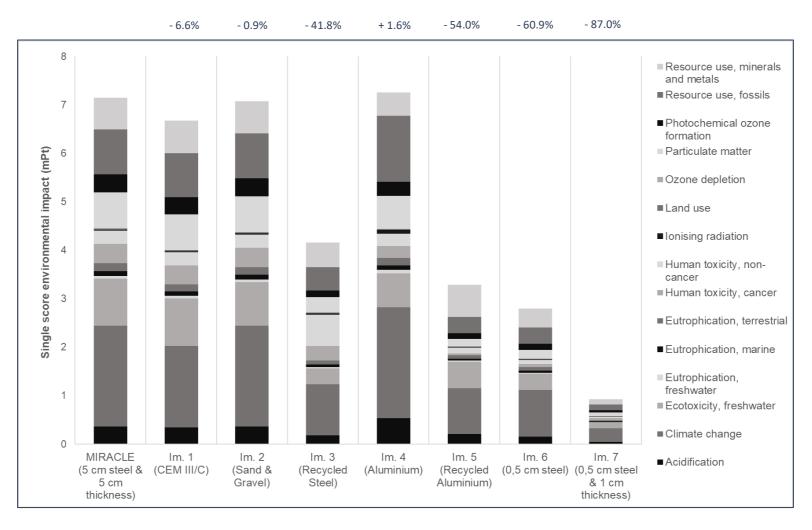



45

MIRACLE project (cradle-to-gate)

• First composition

Components	Mass in 1 m ³ (kg)			
Portland cement	484,86			
Limestone aggregates	1454,57			
Water	242,43			
Micro-additions	24,24			
Steel microfibers	484,86			
Total	2690,96			



Steel Microfibers

KU LEUVEN

 Framework to assess and benchmark existing radiative cooling materials based on (cradle-to-gate) environmental impact and cooling performance

Eromonuorla	
Framework	

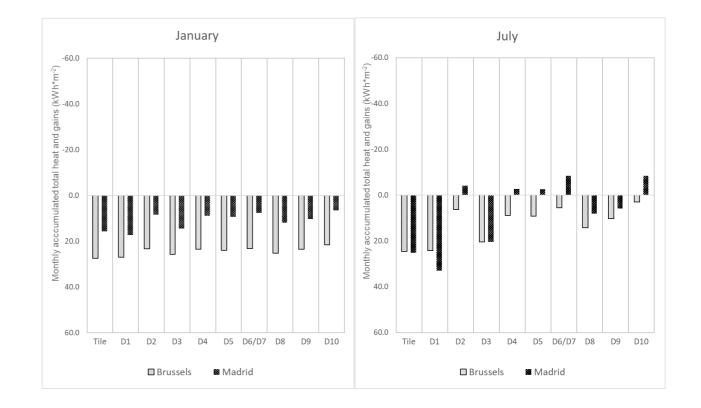
- 1. Selecting the RC materials
- 2. Environmental impact assessment
- 3. Cooling performance
- 4. Pareto front optimalization

Name	compositio	on			Source	Name	compositio	n			source
	# layers	Material	Thickness of each layer	Illustration			# layers	Material	Thickness of each layer	Illustration	
D1	4	TiO ₂	20-300 nm	100; 500; 100; 100; 100; 100; 100; 100;	Kecebas MA, Menguc MP, Kosar A, Sendur K (2017) Passive radiative cooling design with broadband optical thin-film filters. J Quant Spectroic Radiat Transf 198:1389–1351. https://doi.org/10.1016/j.jqsrt.2017.03.046		1	PET	300 µm		Mandal J, Fu Y, Overvig AC, et al (2018) Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science (1979) 362:315–319. https://doi.org/10.1126/science.aat9513
	3	SiO ₂	20-300 nm				1	1 Steel	100 µm		
	1	Ag	50 nm					g			
	1	Si-wafer	/								Mandal J, Fu Y, Overvig AC, et al (2018)
D2	31	TiO ₂ 20-220 nm	Kecebas MA, Menguc MP, Kosar A, Sendur K (2017) Passive radiative cooling design with broadband optical thin-film filters. J Quant	D7	1	Polyvinyl fluoride	500 μm	Network of Air voids in	Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling, Science (1979) 362:315–319.		
	31	SiO ₂	50-401 nm		Spectrosc Radiat Transf 198:1339–1351. https://doi.org/10.1016/j.jqsrt.2017.03.046		1	AI	200 μm	polymer	https://doi.org/10.1126/science.aat9513
	1	Ag	100 nm				1	0	200 μ11		
	1	Si-wafer	/			D8	11	SiO ₂	113-462 nm		Osuna Ruiz D, Lezaun C, Torres-García AE,
D3	1	Quartz	2500 nm		Rephaeli E, Raman A, Fan S (2013) Ultrabroadband photonic structures to achieve		11	Si	20-97 nm	Δι	Beruete M (2023) Metal-free design of a multilayered metamaterial with chirped Br grating for enhanced radiative cooling. Op
	1	SiC	8000 nm	(a)	high-performance daytime radiative cooling. Nano Lett 13:457–1461. https://doi.org/10.1021/n/4004283		1	Si-wafer	500 µm	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Express 31:22698. https://doi.org/10.1364/oe.492404
	15	TiO ₂	25-75 nm								
	15	MgF_2	35-105 nm			D9	4	SiO ₂	54-230 nm	907 230 nm -1905 455 nm	Raman AP, Anoma MA, Zhu L, et al (2014) Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515:540–544. https://doi.org/10.1038/nature13883
	1	Ag	50 nm				3	TiO ₂	34-485 nm		
D4		TPX with 6%	2500 nm		Zhai Y, Ma Y, David SN, et al. (2017) Scalable- manufacturd randomized glass_polymer hybrid metamaterial for daytime radiative coolingScience.(1979) 355:1062–1066, https://doi.org/10.1126/science.aa/7899		1	Ti	20 nm	50g 688 nm 50g 73 nm	
		SiO ₂ spheres					1	Ag	200 nm	200 nm 20 nm 50	
	1	Ag	200 nm				5	Si-wafer	750 μm	54 rm 54 rm	
D5	1	PDMS	100 µm	100 μm PDMS 500 μm Silica 120 nm Silver	Kou J long, Jurado Z, Chen Z, et al (2017) Daytime Radiative Cooling Using Near-Black Infrared Emitters. ACS Photonics 4:525–530. https://doi.org/10.1021/acsphotonics.6b00991	D10	4	SiO ₂	314-951 nm		Kecebas MA, Menguc MP, Kosar A, Sendur K (2020) Spectrally selective filter design for passive radiative cooling, Journal of the Opti Society of America B 37:1173. https://doi.org/10.1364/josab.384181
05							3	TiO ₂	378-782 nm		
	1	Si-wafer	500 µm				1	Ag	100 nm	A more Surray A more	
	1	silver	120 nm				1	Si-wafer	/	A SAMA	

 Framework to assess and benchmark existing radiative cooling materials based on (cradle-to-gate) environmental impact and cooling performance

Framework

- 1. Selecting the RC materials
- 2. Environmental impact assessment
- 3. Cooling performance
- 4. Pareto front optimalization

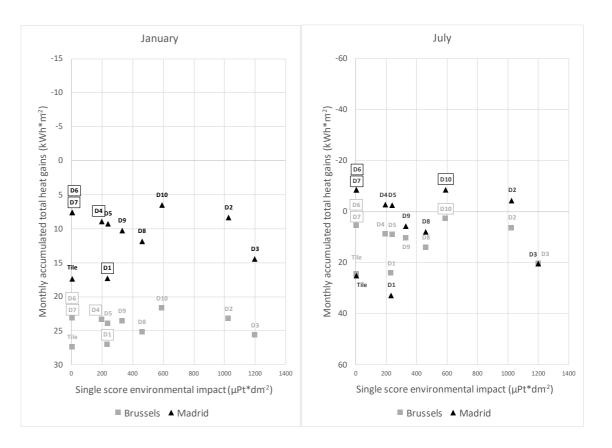

 Framework to assess and benchmark existing radiative cooling materials based on (cradle-to-gate) environmental impact and cooling performance

Framework

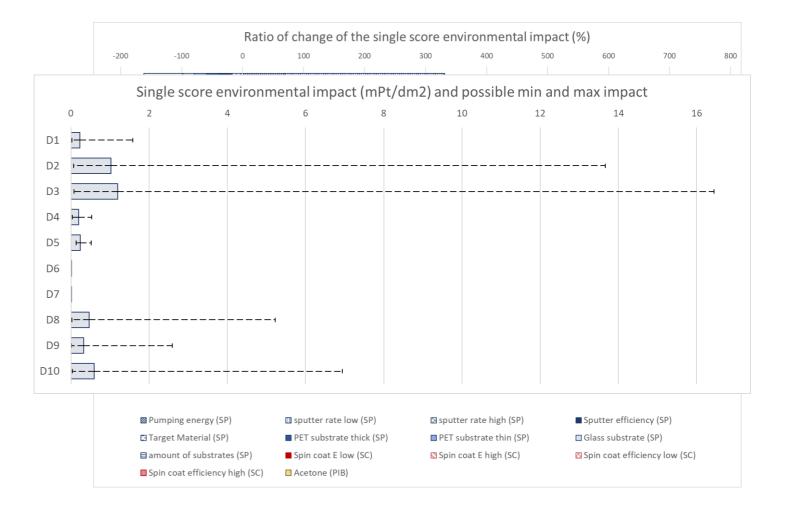
- 1. Selecting the RC materials
- 2. Environmental impact assessment

3. Cooling performance

4. Pareto front optimalization

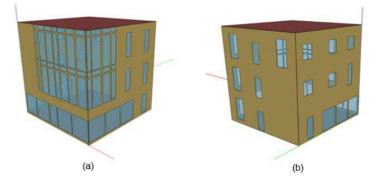


 Framework to assess and benchmark existing radiative cooling materials based on (cradle-to-gate) environmental impact and cooling performance


Framework

- 1. Selecting the RC materials
- 2. Environmental impact assessment
- 3. Cooling performance
- 4. Pareto front optimalization

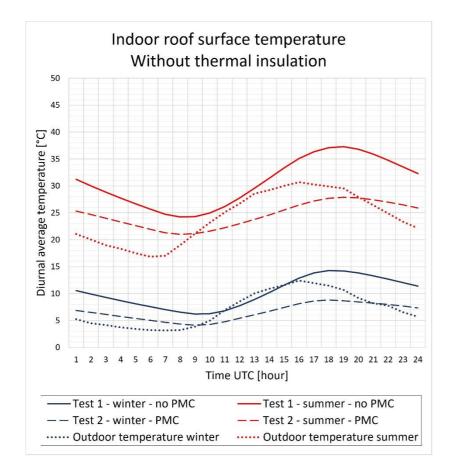
- Uncertainty data collection and assumptions
- Uncertainty from data collection bigger than uncertainty Ecoinvent data and LCA methodology
- Data collection = biggest challenge


WP5 Impact

- Research topics
 - Environmental impact MIRACLE and state-of-the-art radiative cooling materials
 - Effect of cooling potential on buildings (reduction energy use for cooling)
 - In starting phase
 - Urban heat-island mitigation
 - Climate change mitigation (radiative forcing)

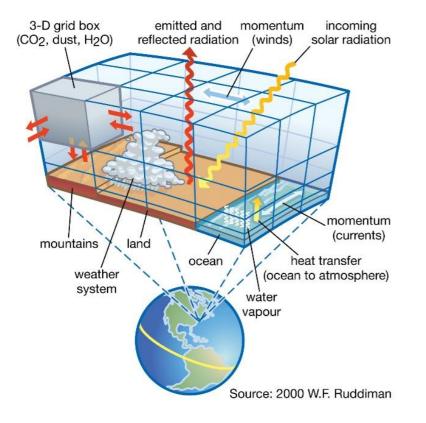
MIRACLE project (EnergyPlus)

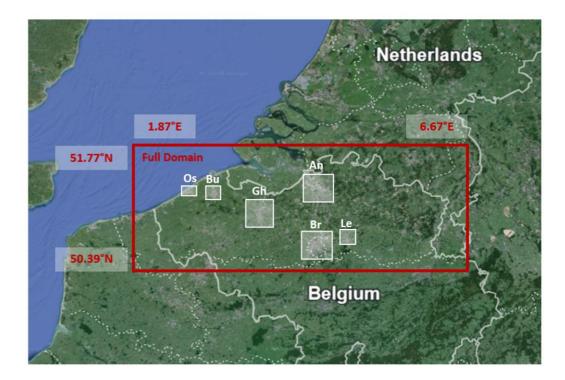
- EnergyPlus building energy simulation software
- Geometry of KUBIK test building
- Building components 20cm thick concrete
- We assess the outdoor and indoor temperature and energy use [kWh/m2]
- PMC = changing albedo and emissivity of the concrete structure
- Thermal insulation; U = 0.24W/m2



	Without PMC
Without thermal insulation	Simulation 1

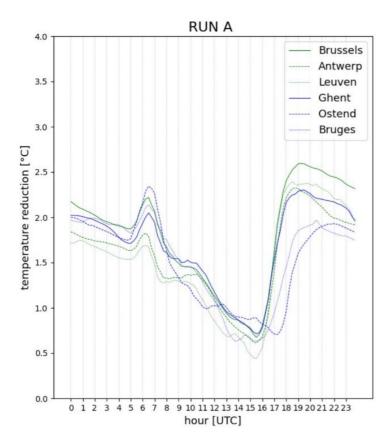
MIRACLE project (EnergyPlus)

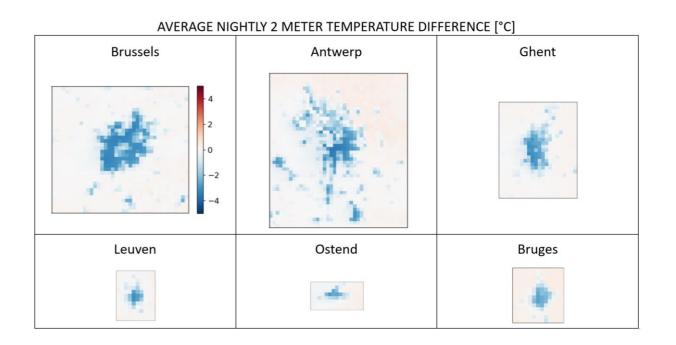

WP5 Impact



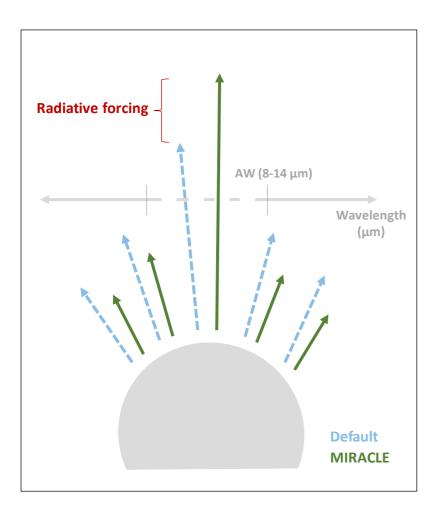
- Research topics
 - Environmental impact MIRACLE and state-of-the-art radiative cooling materials
 - Effect of cooling potential on buildings (reduction energy use for cooling)
 - In starting phase
 - Urban heat-island mitigation
 - Climate change mitigation (radiative forcing)

MIRACLE project (Climate modelling)





MIRACLE project (Climate modelling)


WP5 Impact

- Research topics
 - Environmental impact MIRACLE and state-of-the-art radiative cooling materials
 - Effect of cooling potential on buildings (reduction energy use for cooling)
 - In starting phase
 - Urban heat-island mitigation
 - Climate change mitigation (radiative forcing)

MIRACLE project (Climate modelling)

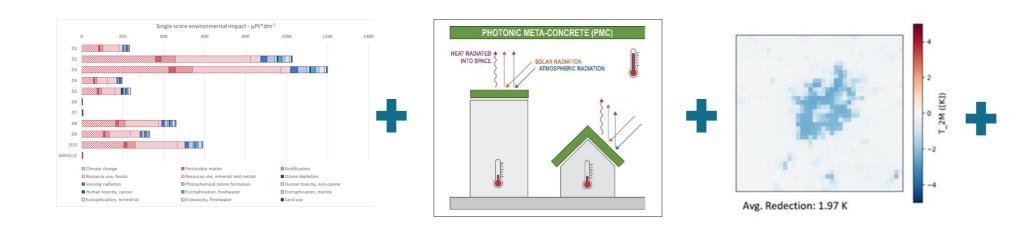
	Albada	Emissivity difference					
	Albedo	Mean surface	Minimum surface	Maximum surface			
	difference	temperature	temperature	temperature			
Radiative forcing (W/m ²)	65.61	4.476	4.332	4.609			
Reduced emissions 5 day heatwave (kg CO ₂ eq)	2.04E+07	1.39E+06	1.35E+06	1.43E+06			

KU LEUVEN

Radiative forcing

AW (8-14 μm)

Wavelena


Default

MIRACLE

• Combining all 4 topics

- Expressing environmental impact in Kg CO₂ eq.
- Expressing urban heat island mitigation in Kg CO₂ eq.
- Expressing climate change mitigation in Kg CO₂ eq.
- Expressing cooling potential on buildings in Kg CO₂ eq.

21

MIRACLE project

The MIRACLE Project has been broken down into 6 work packages (WP)

This WP1 Components

Identification of the most appropriate composition for cement-based materials to function as a radiative cooling material

WP2 Concrete

Optimization of hierarchical porous structures to design and fabricate concrete foams that exhibit low non-radiative heat loses and optimized radiative properties

WP3 Photonic Metaconcrete (PMC)

Computational and experimental demonstration of nanophotonic metaconcretes

WP4 Prototype

To design, build and test a prototype to provide the proof of concept and performance assessment of the PMC developed in previous work packages

WP5 Impact

This WP aims at assessing the impact of PMC technology and points to a twofold objective: On the one hand, a deep analysis on the environmental impact of the Photonic Meta-Concrete. On the other hand, an exploratory study about the possibilities of Meta-Concrete in other applications like solar cells and communication technologies.

WP6 Management, Dissemination, Exploitation and Communication

This WP comprises the organization of MIRACLE, its scientific coordination and administrative management, and dissemination & exploitation & communication strategies

Cradle-to-gate environmental impact assessment of:

- The components and the mixtures of MIRACLE
- Extisting radiative cooling materials

Life cycle assessment of prototype and final mixtures, taking into account:

- Production process
- Construction
- Use phase
 - Positive (and negative) impact energy use of buidlings (EnergyPlus)
 - Possitive (and negative) impact on the urban heat island and climate change (climate modelling)
- End of life

Thank you for your attention

Event: Sustainable Places 2024, Luxemburg

Date: 24/09/2024

Author/Partner: KU Leuven

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 964450.

