

SATO: Self-Assessment Towards Optimization (Smart Readiness) in (Non-Industrial) Building Energy

Vinicius Cogo, Miracle Aniakor

This project receives funding in the European Commission's Horizon 2020 Research Programme under Grant Agreement Number 957128

Who we are

16 partners across7 European countries

Funding ~7M€ over 48 months (Oct. 2020 → Sept. 2024)

Pilots 9 pilots, 15 use cases

Challenge

Building stock unable to properly **assess and optimize** whole building energy consumption

PLACES 2024

2

SATO Overview

SATO SUSTAINABLE PLACES 2024

- Create an IT platform for the automated self-assessment and self-optimization
- Real-life building energy use, smartness, and occupancy
- Semantic-based interoperability to integrate heterogeneous data and systems

Actors

The SATO Platform

- Develop a cloud-based platform and integrate it with the commercial platforms in operation at the pilot buildings and with other external data sources
- Employing enterprise-level software widely used in industry to implement components agnostic to the computing platform underneath

SATO DE ACES 2024

Buildings

Sources

External Data

SATO Platform

Self-assessment and optimization:

- Building energy
- Systems and EBCs
- Energy flexibility
- User comfort

Actors

The SATO Platform

- Standardized data models and interfaces to represent and implement data from sensors, KPIs, assessments, and services
- Standardized semantic models for devices, buildings, and other entities involved in the self-assessment and optimization processes

SUSTAINABLE

External Data Sources

Buildings

SATO Platform

Self-assessment and optimization:

G

- Building energy
- Systems and EBCs
- Energy flexibility
- User comfort

- **Top-down approach** in integrating the SATO platform with its ecosystem (actors, buildings, and external data sources)
 - 3 main conceptual layers

External Data Sources

- Device Semantics Interoperability
- Syntactic Interoperability
- Standardized "Raw" Data/Event Storage

Buildings

- **Top-down approach** in integrating the SATO platform with its ecosystem (actors, buildings, and external data sources)
 - 3 main conceptual layers

SATO SUSTAINABLE PLACES 2024

25+ conceptual components

- **Top-down approach** in integrating the SATO platform with its ecosystem (actors, buildings, and external data sources)
 - 3 main conceptual layers
 - 25+ conceptual components
 - **170+** implemented components

- **Top-down approach** in integrating the SATO platform with its ecosystem (actors, buildings, and external data sources)
 - 3 main conceptual layers
 - 25+ conceptual components
 - **170+** implemented components

PLACES 2024

 Hundreds of component instances since each pilot building may instantiate multiple KPIs, assessments, and services

SATO Platform in Numbers

9	80+	450+	3.3k+
Pilots	Buildings*	Zones+Spaces	Devices
	(each home in residential pilots is considered a building)		
124	104	26k	11k
KPI instances	Assessments instances	Lines of code (platform)	Lines of code (KPIs, assessments, optimizations)

Motivation

- •Heterogeneous representation of building-related data and context
 - Different labels associated with devices

siemens Shelly redy

IoT integration, interoperability, and process automation platform

Seamless data and systems integration through Semantic-based interoperability

Automated discovery of assessments and services, based on semantically annotated models of building components

SATO DO PLACES 2024

 Represent data and semantics with a homogeneous language

Represent highly connected knowledge

Track historical data

What to do?

 Represent data and semantics with a homogeneous language

- •Using ontologies, smart data models, and NGSI-LD
- Represent highly connected knowledge
 Using knowledge graphs with CIM
- Track historical data
 - •Using timeseries databases like TimescaleDB

Modeling SATO Context Information Model (CIM) using Ontologies, Smart data models, and NGSI-LD

- Adopting semantic web technologies
 - $_{\odot}\,$ Proven to be effective in other domains
 - Provide a formal and standardized representation of conceptualization using linked data approach

- NGSI-LD is way to represent building-related data and context
- SATO adopts the Smart data models to create a common system and data format to foster collaboration and reusability
- To represent concepts
 - \circ Building
 - \circ Space
 - \circ Device

Introduce the zone concept

 Virtual space

```
"id": "urn:ngsi-ld:Building:Lisbon-FCUL-Library",
"type": "Building",
"category": "Office",
"ifcId": "0tvQl$v8D1XApAUu_bKepf",
"contains": "urn:ngsi-ld:Device:Lisbon-FCUL-Library:HVAC:RTU-North:Actuator_C02-air-quality-control-setpoint",
"address": {
    "addressCountry": "Portugal",
    "addressRegion": "Lisbon",
    "streetAddress": "Campo Grande 016, 1749-016 Lisboa",
    "addressLocality": "Campo Grande"
    },
    "peopleCapacity": 250.0,
    "name": "FCUL Library"
```

SATO Context Information Model

•**CIM** provides a knowledge graph that shows how all the entities are connected with others in the platform

Timeseries DB

•Timeseries databases (e.g., **TimeseriesDB**) keeps track of **historical records** and changes

Context aware Applications

- Context-aware applications refers to an intelligent system that adapt its functionality based contextual data from the building environment
 - User comfort implies how comfortable an occupant is based on environmental conditions like Temperature, Humidity, Co2 concentration level and so on
- Introduce the concept of task
 - Elucidate what tasks are involved within the building
 - ${\boldsymbol{\cdot}}$ Create task definitions and integrate them in the ${\boldsymbol{\mathsf{CIM}}}$
 - Autonomous creation of task instances and scheduling for deployment

Context aware Applications

•Example: Thermal comfort

- Gets occupancy estimation
- Gets the temperature of the space
- Checks temperature deviation based on reference
- Adjust room temperature based on control or actuation service

Limitations in representing concepts related to Tasks

- •The core of **SATO** is not only confined for building monitoring purposes but extends beyond that to:
 - **Assess** the building performance
 - \circ $\;$ Better insights into the current state of the building
- The precepts of tasks in SATO platform
 - \circ $\;$ There are not yet models that represents the concept of tasks

Task categories

• In SATO, tasks has **four** main categories

- Virtual Sensors: Simple computation
- KPI: Computes metrics using virtual sensors, sensor data, and other KPIs
- Assessment: Final report comparing KPIs and sensor data to baselines (historical, external datasets, or standards)
- Services: provides actions that impact a building

Modelling tasks generically

Defining and instantiating tasks

Task Definition		Task Instance		
ID	A11_Thermal-Comfort	ID	Lisbon-FCUL-Library:Assessment- Instance_Thermal-Comfort	
REQ	{"temp_sensor": {"categorty": ["Sensor", "VirtualSensor"], "measuresProperty": "Temperature},}	REQ	{"temp_sensor": "Lisbon-FCUL- Library:VirtualSensor_Average-Temperature", "occ_sensor": "Lisbon-FCUL- Library:VirtualSensor_Average-Temperature"}	
ENTRY	A11-A:FCR-V01	ENTRY	A11-A:FCR-V01	
FREQ	[@hourly, @monthly, @daily, @yearly, <any cron="" pattern="">]</any>	FREQ	@hourly	

Self Assessment Framework (SAF)

• Directed Acyclic Graph (DAG)

Scenario: Thermal Comfort

Assessments	Services	
Lisbon-FCUL-Library:Assessment- Instance_Thermal-Comfort-Report:Hourly	Lisbon-FCUL-Library:Service-Instance _User-Comfort	

Thermal Comfort Scenario - Feedback

Temperature Give feedback about the current temperature. Hot Warm Slightly Warm Neutral _ Slightly Cool Cool Cold _

Thermal Comfort Scenario – Assessment Results

SATO SUSTAINABLE PLACES 2024

Challenges with many Tasks

Thermal Comfort task instance discovery

Requirements

- **O** Occupancy Sensor
- **T** Temperature Sensor

Self-discovery for autonomous execution of tasks

Scenario: Smart Readiness Indicator (SRI)

Smart Readiness Indicator (SRI)

A single score

to classify the

building smart readiness

Readiness to

adapt in response to the needs of the occupant

Readiness to

facilitate maintenance and efficient operation

Readiness to

adapt in response to the situation of the energy grid

Smart Readiness Indicator (SRI)

total score is based on average of total scores on 8 impact criteria

... influenced by Technical Domains

(Original) Static SRI Calculation

• Experts inspect buildings and manually fill out excel sheets

code service																	
Heating-S1	Heat emission control				Service group: Heat control - demand side											XLSX	
						IMPACTS											
		_	Functionality leve	sls			et and a family					• • · · · · · ·	0 <i>2</i> 14	·			
	code	se	rvice														
level 0	Heating-S	2a He	eat generator con	ntrol (all except h	neat pumps)	s	ervice group:	С	ontrol heat productio	n facilities							
level 1			code	service										1			
	-		Cooling-S1	Cooling emiss	western europ	pe	Energy	Flexibility for	r		U.S. Jak 0	Maintenance	Information.				
level 2	level 0	Co	r				savings on site	the grid and storage	Comfort	Convenience	Wellbeing	& fault prediction	to occupants				
level 3			-	code	Heating system	m	0.34	0.4	6 0.16	0.1	0.16	0.35	0.11				
	level 1	Va	ar		Domestic Hot	Water	0.08	0.1	0.00	0.1	0	0.08	0.11				
level 4			loval 0	Cooling-S2	Cooling syster	m	0.03	0.0	4 0.16	0.1	0.16	0.03	0.11				
	level 2	va	ar levero		Controlled ver	ntilation	0.18	0.0	0 0.16	0.1	0.16	0.18	0.11				
			-		Lighting		0.01	0.0	0 0.16	0.1	0.16	0.00	0.00				
	level 3		lever1	ľ –	Electricity: ren	ewables & sto	ra 0.11	0.1	5 0.00	0.1	0	0.11	. 0.11				
			- Investig		Dynamic Enve	lope	0.05		0 0.16	0.1	0.16	0.05	0.11				
	level 4		level 2	(level	Electric Vehicl	le Charging	0	0.0	5 0	0.1	0	0	0.11				
			-		wontoning &	control	1.00	1.0	2 0.2	1.00	1.00	1.00	1.00				
			level 5	c level			1.00	1.00	1.00	1.00	1.00	1.00	1.00		maintenance & fault	information to	
			Invest 4		IMPACT WEIGH	HTINGS											
			level 4	(level			Energy	Flexibility for	for Id Comfort	Convenience	Health &	Maintenance		1			
			-		-		savings on	the grid and				& fault	Information				
				level			site	storage			weilbeing	prediction	to occupants				
							0.17	0.3	3 0.08	0.08	0.08	0.17	0.08			maintenance & fault	information t
				level							and	storage		nvenience	Health & wellbeing	prediction	occupants
					level 3	level 0	None			0		0	0	0	0	0	0
				-		level 1	reporting on current e	lectricity consumpti	ion on building level	0		0	0	0	0	0	1
					level 4	level 2	real-time feedback or	benchmarking on bu	uilding level	1		0	0	0	0	0	2
						level 3	real-time feedback or	benchmarking on a	opliance level	2		0	0	0	0	1	3
							real-time feedback or	benchmarking on a	opliance level with auto	omated		•	0	1	_	2	2

Semantically Describing SRI

Excel Files

"id": "Aspern-Office:SRI-Report:Domestic-Hot-Water",
"type": "Task",
"category": "SRI-Report",
"dateCreated": "2023-11-02T15:54:50Z",
"dateObserved": "2023-11-01T00:00:00Z",
"dateModified": "1970-01-01T00:00:00Z",
"taskValue": 0.61111111111113

Semantically-enriched TRiG files or JSON objects SATO Knowledge Graph

[1] Stefan Bischof, Erwin Filtz, Josiane Xavier Parreira **Semantic Smart Readiness Indicator Framework**. *SEMANTICS* 2024. [DOI | resource: https://w3id.org/sri]

Dynamic SRI Assessment Visualization

- Continuously self-assessing SRI
- Based on the status of active devices, assessments and services
- Compare with the static baseline
- Improvements are reflected on SRI

SATO SUSTAINABLE

• Help in fault-detection

Conclusions

- •Adopt **semantic web technologies** to support standardization of building concepts
- Creating the concept of **tasks** in the CIM
 Support self-discovery and autonomous executions of tasks
- •This principle can also be adopted by many other context-aware applications, such as:
 - Fault detection and diagnosis
 - Building state prediction
 - Control optimization and others

This project receives funding in the European Commission's Horizon 2020 Research Programme under Grant Agreement Number 957128

Thank you

COLLECTIEF Collective Intelligence for Energy Flexibility

An EU H2020 Project for Enhancing Energy Efficiency and Flexibility in Existing Buildings

Mohammadreza Aghaei Project Coordinator, NTNU

25 September 2024

COLLECTIEF Collective Intelligence for Energy Flexibility

 4 Years June 2021-May 2025

• 4 urban pilots

to test our energy management system

COLLECTiEF Consortium

- Norwegian University of Science and Technology NTNU (Norway)
- Lund University (Sweden)
- The Cyprus Institute (Cyprus)
- Energy@Work (Italy)
- R2M Solution SRL (Italy)
- EM Systemer AS (Norway)
- NODA Intelligent Systems AB (Sweden)
- Geonardo Environmental Technologies Ltd. (Hungary)
- Scientific and Technical Center for Building (France)
- CETMA Technologies Design and Materials European Research Centre (Italy)
- LSI Lastem (Italy)
- Ålesund Municipality (Norway)
- Teicos UE SRL (Italy)
- Virtual Manufacturing AB (Sweden)
- Politecnico di Milano (Italy)

COLLECTIEF Team

Our Objectives

- We create a CI-based energy flexible network that ensures low-cost installation and maximum data security.
- We use **cost-effective components** to make our system **compatible** across Europe.
- We **test our system in 14 buildings** across the EU to prove its efficiency and adaptability to different climate zones
- We achieve more accurate and non-invasive environmental monitoring through sensors focusing on user needs
- We design a smart, user-centric and user-friendly platform to improve building management and maximize energy saving.

COLLECTIEF How?

The solution

We use **Collective Intelligence** to smart up existing buildings and their legacy equipment and improve their **energy performance** and **climate resilience**.

COLLECTIEF How?

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101033683.

This presentation reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.

COLLECTIEF How? How it works!

COLLECTiEF: Digital Technologies

COLLECTIEF How?

Business Model

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101033683.

This presentation reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.

Our Pilots

7

EDUCATIONAL BUILDINGS

HEALTH CARE CENTERS

SPORTS ARENA

MEDICAL CENTER

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101033683. This presentation reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.

HIGHER EDUCATION (30%) WITH OFFICES (40%), LABORATORIES (30%), RESTAURANT (10%)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101033683.

This presentation reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.

RESIDENTIAL BUILDINGS

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101033683.

This presentation reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101033683. This presentation reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.

$\mathsf{C} ~\mathsf{O} ~\mathsf{L} ~\mathsf{L} ~\mathsf{E} ~\mathsf{C} ~\mathsf{T} ~\mathsf{i} ~\mathsf{E} ~\mathsf{F}$

The Benefits

Upgrade the smartness level of existing buildings:

16% On average reduce the primary energy use

<mark>0.2-3 €⁄</mark>m²

annual energy cost savings

<mark>15%</mark>

Increase user satisfaction

<mark>24%</mark>

Increase the demand flexibility

Primary Energy

Savings

Increased climate flexibility and resilience in urban areas, inducing larger integration of renewable generation

This presentation reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.

COLLECTiEF's solutions

Ê

renewable generation

- COLLECTIEF project upgrades the smartness of existing buildings to a higher level and creates a collaborative network of a large number of buildings providing grid flexibility while still ensuring the quality of service to the end customer.
- COLLECTIEF methodology connects buildings, household appliances, and energy systems with a **minimum need for data transfer and storage**.
- COLLECTIEF uses **low-cost and open-source components** with cost-effective equipment available on the market such as smart plugs and smart thermostats.
- COLLECTIEF solutions can have direct application for energy management in "Positive Energy Buildings and Districts".

Timeline

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101033683.

This presentation reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.

Deployment of Monitoring System

Small-Scale Demonstration

Workflow of the small-scale test in G2ELab. bottom-left: BMS panel in the rooms, top-right: flowchart of the developed algorithm, bottom-right: real-time visualization platform to demonstrate the performance of the code.

Integration of Edge Node and Cluster Node

Cluster Node, Edge Node, and the Edge-Cluster communication in the CIRL-DSM algorithm

This project has received funding from the European Union's Horizon 2020 research and

This presentation reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.

User Interface and Digital Dashboard

Large-Scale Demonstration

ullet

•

•

•

•

Data analysis and impact assessment

Overview of the impact assessment

Data analysis and impact assessment

Example of a synthetic report which displays the operating status of the IEQ monitoring system in one of the pilot buildings

Average 🔽																	
of days on		lug-22			ago-22			set-22			ott-22			nov-22			dic-22
record			LSI Comme			LSI Comme			LSI Comme			LSI Comme			LSI Commer		b
50%	0%	0%		0%	38%		100%	100%		100%	100%		100%	100%		87%	100%
47%	0%	0%		0%	38%		100%	33%		100%	100%		100%	100%		87%	100%
50%	0%	0%		0%	38%		100%	100%		100%	100%		100%	100%		87%	100%
49%	0%	0%		0%	38%		80%	100%		100%	100%		100%	100%		87%	100%
50%	0%	0%		0%	38%		100%	100%		100%	100%		100%	100%		87%	100%
34%	0%	0%		0%	38%		100%	60%		20%	0%		53%	100%		80%	81%
50%	0%	0%		0%	38%		100%	100%		100%	100%		100%	100%		87%	100%
50%	0%	0%		0%	38%		100%	100%		100%	100%		100%	100%		87%	100%
50%	0%	0%		0%	38%		100%	100%		100%	100%		100%	100%		87%	100%
50%	0%	0%		0%	38%		100%	100%		100%	100%		100%	100%		87%	100%

Example of a synthetic report which displays the progress in POEs collection in one of the pilot buildings

Thermal Discomfort from POE questionnaires per pilot building for the baseline period

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101033683

This presentation reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.

Data analysis and impact assessment

Energy savings Respond to the **Respond** to and operation needs of the grid or user needs Energy savings Comfort Convenience Maintenance and Information to Health and nergy flexibility fault prediction occupants well-being and storage ++ n -00

Expected overall SRI score with the application of the measures imposed by COLLECTIEF project.

Duilding				Aggregated Score					
Building	SKI Kange	SRICIASS	SRI Score	Building	User	Grid			
Cypriot Pilots									
Guy Ourisson Building	0%-20%	G	5,80%	6,60%	10,90%	0,00%			
Graduate School	0%-20%	G	5,70%	6,40%	10,60%	0,00%			
Novel Technologies Laboratory	0%-20%	G	19,10%	24,30%	<mark>2</mark> 2,20%	10,70%			
French Pilots									
G2Elab	50%-65%	D	50,60%	65,20%	64,00%	22,50%			
Italian Pilots									
Valsesia C2	0%-20%	G	12,20%	19,60%	13,70%	3,20%			
Valsesia C3	0%-20%	G	12,20%	19,60%	13,70%	3,20%			
Valsesia C4	0%-20%	G	12,20%	19,60%	13,70%	3,20%			
Norwegian Pilots									
Eidet Omsorgssenter	35%-50%	Е	36,90%	48,90%	48,30%	13,40%			
Ellingsoy Idrettshall	20%-35%	F	33,90%	45,00%	43,00%	13,90%			
Flisnes Barneskole	20%-35%	F	27,90%	27,90% 43,90%		5,50%			
Hatlane Omsorgssenter	20%-35%	F	32,50%	46,20%	39,30%	12,10%			
Moa Helsehus	20%-35%	F	25,90%	39,20%	34,50%	3,90%			
Spjelkavik Ungdomsskole	20%-35%	F	30, 80%	44,80%	41,60%	6,00%			
Tennfjord Barneskole	20%-35%	F	27,90%	42,40%	36,20%	5,10%			

This project has received funding from the European Union's Horizon 2020 researd $H_{
m c}$

THANK YOU!

Get in touch Mohammadreza Aghaei Project Coordinator, NTNU mohammadreza.aghaei@ntnu.no

info@collectief-project.eu www.collectief-project.eu @CollectiefP
COLLECTIEF project
COLLECTIEF project

Algorithm development for COLLECTIEF System

Vahid M. Nik, Lund University

Urban energy systems are **complex systems**, affected by several factors, such as building energy performance, user behavior, other urban utilities etc. Impact of extreme climate events can become much larger in complex systems such as urban energy systems, therefore we should increase the 'climate resilience' of such systems and make them more resistance and flexible for the future climate.

Nik VM, Perera ATD, Chen D. "Towards climate resilient urban energy systems: A review", National Science Review, March 2021, 8, 3. <u>doi:10.1093/nsr/nwaa134</u>.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101033683. This presentation reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.

Climate change results in warmer climate conditions on average and intensified climate variations, resulting in stronger and more frequent extreme events such as heatwave, tornado, flooding etc.

www.ethlife.ethz.ch
When it comes to energy management, there is a need for innovative approaches for energy system design and control

→ White/Grey/Black-box modelling

→ AI-driven approaches
→ ML and RL approaches

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101033683. This presentation reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.

Our solution

Combining Collective Intelligence and Reinforcement Learning in Energy Management CIRLEM

Nik VM, Hosseini M. "**CIRLEM**: a synergic integration of Collective Intelligence and Reinforcement learning in Energy Management for enhanced climate resilience and lightweight computation", Appl Energy 2023;350:121785. <u>doi:10.1016/j.apenergy.2023.121785</u>.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101033683. This presentation reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.

Collective intelligence (CI)

- Distributed intelligence
- Based on collaborative problem solving
- Three characteristics: adaptation, selforganization, and emergence.

Self-organization

- **Dynamic** mechanism (real-time response)
- System automatically transforms itself to adapt to a changing environment
- No central control
- Arises from the interactions of individuals at the local level

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101033683.

This presentation reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.

Reinforcement Learning

- Learning by doing
- Learning without requiring historic data
- Maximizing the reward by keeping the state close to the defined conditions
- Low computation

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101033683.

This presentation reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101033683. This presentation reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.

WP2 overview

T2.1 Enhancing the available control algorithms for COLLECTIEF ClusterNode

T2.2 Developing IoT and occupant-centric control algorithms for COLLECTIEF Edge Node

T2.3 Providing inputs and boundary conditions data for COLLECTIEF network to be used in virtual test-bed

T2.4 Testing of COLLECTIEF algorithms via co-simulation based on building and energy system modelling and analysis

T2.5 Deployment and testing of algorithms and control strategies at small-scale pilot

Edge Node (Building Level)

Cluster Node (Urban Scale)

Hosseini M, Erba S, Hajialigol P, Aghaei M, Moazami A, Nik VM. "Enhancing climate resilience in buildings using Collective Intelligence: A pilot study on a Norwegian elderly care center". Energy Build 2024;308:114030. <u>doi:10.1016/j.enbuild.2024.114030</u>.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101033683. This presentation reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.

Experiment in a Living Lab in France

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101033683. This presentation reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.

Experiment in Ålesund, Norway

Hosseini M, Erba S, Hajialigol P, Aghaei M, Moazami A, Nik VM. "Enhancing climate resilience in buildings using Collective Intelligence: A pilot study on a Norwegian elderly care center". Energy Build 2024;308:114030. <u>doi:10.1016/j.enbuild.2024.114030</u>.

Experiments in Milan, Italy and Nicosia, Cyprus

**** * * ***

Extreme Warm Summer during 2040-2070

Nik VM, Hosseini M. "CIRLEM: a synergic integration of Collective Intelligence and Reinforcement learning in Energy Management for enhanced climate resilience and lightweight computation", Appl Energy 2023;350:121785. <u>doi:10.1016/j.apenergy.2023.121785</u>.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101033683. This presentation reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.

Extreme Cold Winter during 2040-2070

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101033683.

This presentation reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.

26

- 24 22 - 22 22 - 22 - 20 2 10⁶ 2 E K

- 10

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101033683.

This presentation reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.

- CIRLEM can considerably decrease the energy demand during extreme climate events while keeping the indoor temperature mostly at the comfort level.
- It enables the entire ecosystem to overcome shocks.
- No need for central control.
- Minimum data gathering and information sharing.
- Enhances over time (self-learning).
- High performance in complex energy systems.
- Tailor-made reward function for each building use type.
- Inclusion of user preferences.
- Operating on different modes depending on the conditions and user preferences.

Thank you!

COLLECTIEF

The algorithm development was supported by the Swedish Research council for Sustainable Development, Formas (project ID: 2022-01120 - CRAFTCIRLEM), the Crafoord Foundation under CARUACI project, the Joint ERA-Net Call 2020 (MICall20) on digital transformation for green energy transition under DigiCiti project (project ID: 108807), and the European Union's Horizon 2020 research and innovation programme under grant agreement for the COLLECTIEF (Collective Intelligence for Energy Flexibility) project (grant agreement ID: 101033683).

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101033683. This presentation reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.

