Contribution to: Sustainable Places 2025 8 – 10 October 2025 Milan, Italy Climate & policy strategies

Strategies for climate adaptation and mitigation: Results and lessons from the Horizon Europe DISTENDER project

Roberto San Jose and Juan L. Perez-Camanyo Environmental Software and Modelling Group Computer Science School – Technical University of Madrid (UPM) Campus de Montegancedo – 28660 Madrid (Spain)

http://artico.lma.fi.upm.es

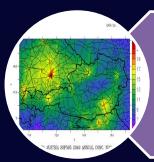
Developing StratEgies by integrating mitigatioN, aDaptation and participation to climate change Risks

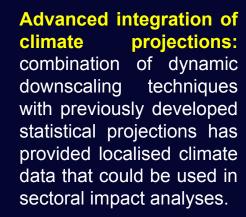
- ☐ Project Duration: 06/2022-11/2025 (42 months)
- □ Partners: 30 partners from 13 countries: Austria, Germany, Greece, Hungary, Italy, Lithuania, Netherlands, Poland, Slovenia, Portugal, Spain, Ukraine and United Kingdom
- ☐ Funding budget for EU partners: 6.4 M EUR + United Kingdom contribution (0.6 m EUR).
- ☐ Climate sciences and responses (HORIZON-CL5-2021-D1-01-05)

CALL TOPIC: Better understanding of the interactions between climate change impacts and risks, mitigation and adaptation options

- Integrating the analysis of the impacts and risks of climate change, mitigation pathways and adaptation strategies into a single framework to help understand and quantify their numerous interactions.
- Actions should also improve the general understanding of the synergies, conflicts and trade-offs between mitigation and adaptation strategies.
- Actions should formulate a set of technical and policy recommendations, including sector-specific ones, targeting both public and private stakeholders, to reduce the tensions between mitigation and adaptation strategies.

- Adaptation (A): Local scale, bottom-up approaches.
- Mitigation (M): Global scale, top-down approaches.


		tation ability)	
	Trade-offs (+A-M) Air conditioning/ Heating Flooding protection Irrigation Water desalination	 Synergies (+M+A) Nature based solutions Water management Building insulation 	Mitigation
•	Coastal buildings Deforestation	 Biofuel agriculture Extend hydro power Monospecific plantations CO2 sequestration Compact urban developm 	\$25.0°C
1	Strict conflicts (-M-A)	Trade-offs (+M-A)	



DISTENDER KEY ELEMENTS

Quantitative and qualitative analyses tools to evaluate the risks and vulnerability of the climate change under different local (high resolution) climate and socio-economic scenarios.

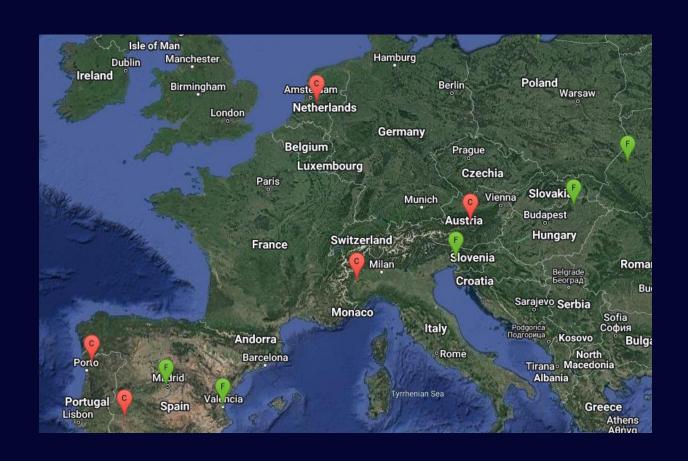
ADAPTATION AND MITIGATION STRATEGIES CONSIDERING SYNERGIES AND TRADE-OFFS

Employ <u>participatory methods</u> to collaboratively develop strategies and assess their robustness across various future scenarios and sectors, including air pollution, health, water, agriculture, and energy demand.

Design a **DSS to assist policymakers** in optimizing use of knowledge generated by DISTENDER and selecting the most favorable strategies aligned with their preferences, based on various bio-physical and robustness indicators.

Stakeholder participation:

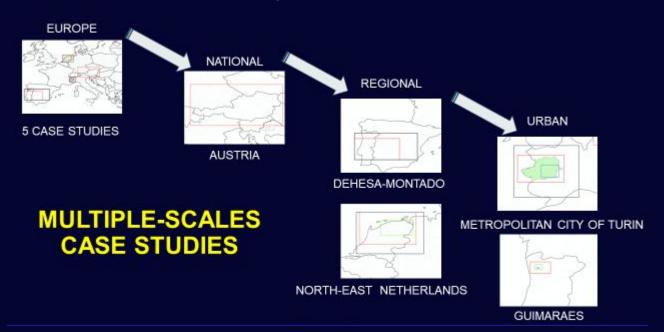
significant contributions from local actors and external experts in the co-creation of socio-economic scenarios, climate strategies and transformation pathways.

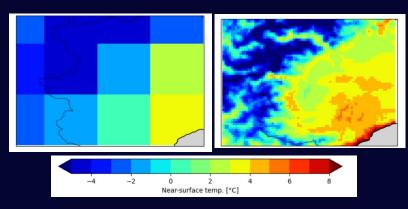


CASE STUDIES

Core Case Studies:

- <u>Austria</u> (national scale); Federal Ministry For Climate Protection, Environment, Energy, Mobility, Innovation And Technology (BMK)
- North-east of The Netherlands (regional scale);
 The Netherland Water Management Authority represented by Hanze University (HUAS)
- South-West Iberian Peninsula, <u>Dehesa-Montado</u> (regional scale) European Agroforestry Federation (EURAF)
- Metropolitan City of Turin in Italy (regional/urban scale)
- **Guimaraes** City in Portugal (urban scale)
- ☐ Follower case studies: Alcorcón (Spain), LVIV (Ukraine), Miskolc (Hungary), Nova Gorica represented by GOLEA (Slovenia), and Valencia represented by VCE (Spain).





DISTENDER: LOCAL SCALE

- Localized scenarios based on indirect drivers (socio-economic) and direct drivers (climate change) to understand climate change risks at local scales and for examining robustness of integrated (adaptation and mitigation) strategies.
- Localized future climate scenarios: dynamical and statistical downscaling methods from global climate models
- ✓ Localized future socio-economic scenarios based on stakeholders workshops and existing SSPs: narrative, trend indicators, land use changes and current climate policies.

Example downscaled temperature from global model 1° (left) to CS scale 3 km (right). Source: WP4

DISTENDER: PARTICIPATORY APPROACH

Workshop 2

Developing integrated and cross-sectoral climate adaptation and mitigation strategies in each CCS

Decision Support System



Workshop 1 Developing **shared** socio-economic pathways depicting possible socio-economic futures in each CCS

Workshop 3 Discussing robust strategies and feasibility

Robust across scenarios

A strategy that performs reasonably well over a wide range of plausible futures

Harmonized across adaptation and mitigation objectives

A strategy that maximizes synergies (and minimizes trade-offs) across objectives

Coherent across sectors

A strategy that maximizes synergies and co-benefits (and minimizes trade-offs) across sectors

Feasible within context

A strategy that is feasible according to the capacities available within the specific context

Transferable across contexts

A strategy that can be suitable for various contexts (i.e., across case studies)

ROUND 1 "Future climate over current socio-economic scenario"

Local climate scenarios (2015-2049) from global SPPs-Radiative forcing levels (1)

Local socio-economic scenario <u>Current</u> (2018)

Future – Present: Impacts of future climate on the current local SSP

DSS

Local climate scenarios (2015-2049) from global SPPs-Radiative forcing levels (1)

Local socio-economic scenarios (CCS-SSPs) Future (2015 - 2049)

Participatory (stakeholders

engagement)

Simulations have been run to isolate the local impact climate and socio-economic scenarios over multiple sectors: air quality, human health. urban heat, agroforestry, and water energy, resources.

Impacts (Round2a - Round1) of the local socio-economic scenarios on the future climate projections

Adaptation & Mitigation Strategies

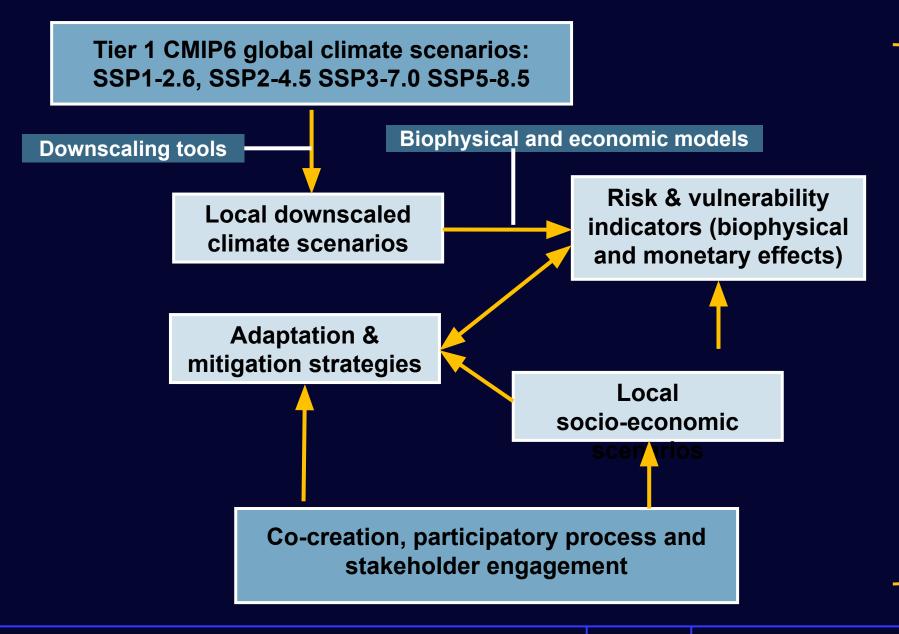
Robust Strategies

(Multicriteria Analysis)

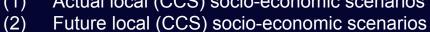
Evaluation of strategies: Round2b

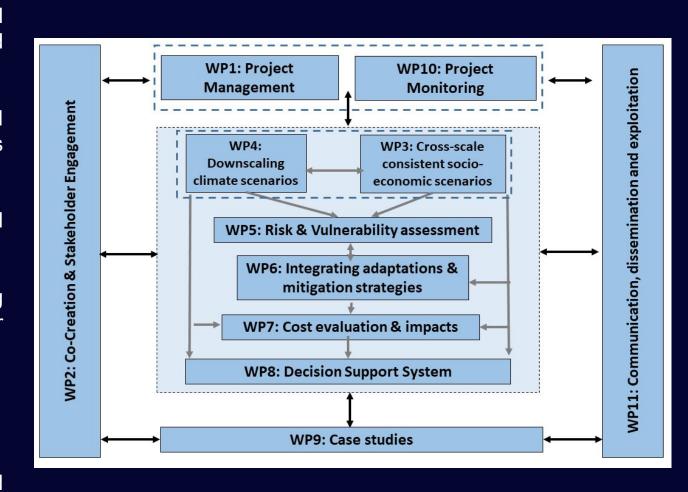
OVERALL

DISTENDER


METHODOLOGY

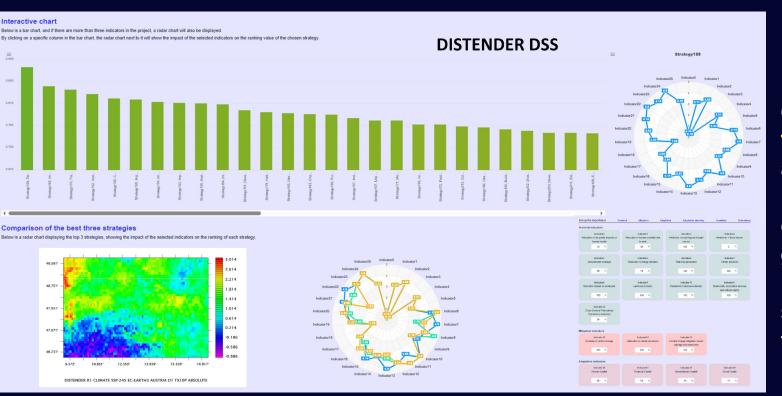
DISTENDER: WORK FLOW


DSS TO
QUERY
RESULTS AND
RANKING
STRATEGIES
(MCDA)



IMPLEMENTATION

- The explorative scenarios will integrate local socio-economic scenarios (WP3) and downscaled climate scenarios (WP4).
- Participatory co-creation methods (WP2) will be utilized in the development of the socio-economic scenarios (WP3) and strategies (WP6) for the CCS (WP9).
- The scenarios will be evaluated in WP5 (risk and vulnerability) and WP7 (economic evaluation).
- The DSS (WP8) will allow the replication and upscaling of the DISTENDER methodologies and tools in other cities and regions.
- Outcomes will be communicate, disseminate and exploit in WP11.
- The project will be managed in WP1 and monitored (progress and impact) by WP10,



DISTENDER DSS: CONCEPTUAL OVERVIEW

"A tool designed to assist decision-makers in evaluating and prioritizing climate change adaptation and mitigation strategies within their own regional or local priorities"

Ranking adaptation and mitigation strategies based on a Multi-Criteria Decision Analysis (MCDA).

Decision-makers can assign weights the indicators according to their preferences, enabling the generation of a ranked list of strategies based on their specific criteria.

Maps or tables of indicators to analyze the impact and risk of the local climate and socio-economic scenariosunder different socioeconomic pathways and climate scenarios

Analysis of strategies against a set of indicators

DISTENDER DSS: RANKING STRATEGIES DECISION MATRIX (STRATEGIES & INDICATORS)

Columns: DISTENDER has setup a 26 **indicators** (sectorial and econmic impacts, adaptation, mitigation and robustness) as reference. The user can add own indicators and make its evaluation

Rows: DISTENDER has co-designed more than 350 strategies for the DISTENDER CCS. The user can add own strategies and make its evaluation

Decision	matrix																			
Strategy title	Indicator0	Indicator1	Indicator2	Indicator3	Indicator4	Indicator5	Indicator6	Indicator7	Indicator8	Indicator9	Indicator10	Indicator11	Indicator12	Indicator13	Indicator14	Indicator15	Indicator16	Indicator17	Indicator18	Indicator19
Strategy150	-3.1+ 0	-3.0+0	-4.0+	-4.0+	-4.0+	-3.0+	-4.5+	-5.0+	-4.0+	-3.6+ ●	-5.0 ₊	-4.0+	-5.0+0	-5.0+	-3.1+ 0	-4.1+0	-4.0+0	-4.0+0	-3.0+	-5.0+
Strategy151	-3.1+ 0	-3.0+0	-3.0+	-3.0+	-3.0+	-3.0+	-4.0+0	-4.0+	-5.0+	-4.2+	-5.0+	-5.0+	-5.0+0	-4.0+	-3.1+0	-3.6+0	-5.0+	-4.0+0	-3.0+	-4.0+0
Strategy152	3.0+	-3.0+	-3.0+	-3.0+	-3.0+	-3.0+	-4.0+	-4.0+	-4.0+	3.5+	-4.0+	-4.0+	-5.0+0	-5.0+	-3.0+0	-4.0+0	-4.0+0	-3.0+	-3.0+	-5.0+
Strategy153	-3.0+	-3.0+	-4.0+0	-4.0+0	-4.0+0	-3.0+	-2.0+	-5.0+	-5.0+	-3.0+ ●	-5.0+ •	- 5.0 + ●	-4.0+	- 5.0 + ●	-3.0+ ●	-4.0+	-4.0+	-1.0+	-4.0+0	-5.0+
Strategy154	3.0+	3.0+	-4.0+0	-4.0+0	-4.0+0	3.0+	-4.0+	-4.0+	-5.0 ₊	-4.0 ₊	- 5.0 + ●	- 5.0 + ●	- 5.0 + ●	-4.0 ₊	3.0+	-3.5+	-4.0+	-1.0+	-3.0+	-5.0+
Strategy155	-3.1+ 0	-3.0+	-3.5+	-3.5+	-3.5+	-3.0+	-4.0+	-4.0+	€ 5.0	-3.0+0	-5.0+	-3.8+	-5.0+0	-5.0+	-4.0+0	-4.5+0	-4.0+	-1.0+	-3.0+	-5.0+
Strategy156	-3.0+	-3.0+	-3.0+	-3.0+	-3.0+	-3.0+	-2.0+	-5.0+	-3.0+0	-3.6+	-4.0+	-3.4+	-4.0+	-5.0+	-3.0+	-4.0+	-4.0+	-2.0+0	-3.0+	-4.0+0
Strategy157	-3.0+ ●	-3.0+	-4.0+	-4.0+	-4.0+	-3.0+ ●	-3.8+	-3.0+0	To off	-5.0+0	-3.0+ ●	-3.0+0	-5.0+0	-3.0+0	-3.0+ ●	-3.0+0	-4.0+0	-4.0+0	-4.0+	-5.0+ ●
Strategy158	-3.0+	-3.0+	-3.5+ 0	3.5+	-3.5+0	-3.0+	-3.0+0	-5.0+0	-3) + O	-5.0+ ●	-5.0+	-4.0+ 0	-5.0+0	-4.0+	-3.0+	-3.5+	-4.0+0	-4.0+0	-3.0+	-5.0+ • •
-																				*

Each strategy is assessed by project experts, who will assign a real number score (with the associated uncertainty) to its potential impact on the reference indicators based on the following reference scale:1. Strong negative effect; 2. Negative effect; 3. No effect; 4. Positive effect; 5. Strong positive effect

DISTENDER DSS: DECISION MATRIX (INDICATORS)

Reference set of indicators

Sectorial and economic indicators

Reduction of air quality impacts on human health
Reduction of excess mortality due to heat
Reduction in hydrological drought hazard
Reduction in flood hazard
Groundwater recharge
Reduction in energy demand
Total crop production
Timber provision
Economic impact on producers
Land use diversity
Reduction in land use intensity
Biodiversity, ecosystem services and natural capital
Cross-sectoral robustness

Mitigation indicators

Increase in carbon storage

Reduction in carbon emissions

Climate change mitigation overall (storage and emissions)

Adaptation indicators

Human Capital
Financial Capital
Manufactured Capital
Social Capital
Climate change adaptation overall (coping capacity)

Robustness indicators

Adaptation-mitigation synergies

Current feasibility

Future feasibility across socio-economic scenarios

Effectiveness across climate scenarios

Transferability across contexts

Policy-makers will assign weights to the indicators according to their preferences, enabling the generation of a ranked list of strategies based on their specific criteria.

DISTENDER DSS: DECISION MATRIX (STRATEGIES) (WP6)

Approximately **70** strategies have been developed for each **CCS** encompassing the following types and subtypes of strategies.

Each strategy will be assessed by project experts, who will assign a real number score to its potential impact on the selected indicators based on the following reference scale:

- 1. Strong negative effect
- 2. Negative effect
- 3. No effect
- 4. Positive effect
- 5. Strong positive effect

Governance, politics, and economy/wellbeing

- **1.** Institutional structures and processes
- **2.** Economic incentives and economic development
- **3.** Policy/regulatory instruments
- 4. Codes, standards, certifications

Infrastructure, technology, nature/environment

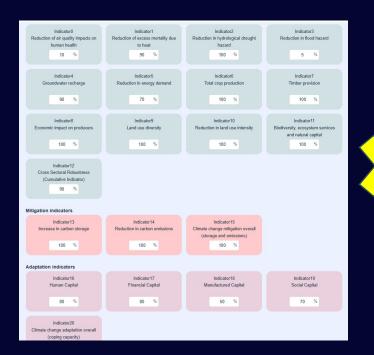
- **5.** Green Infrastructure
- **6.** Hard/grey Infrastructure
- **7.** Nature/Environment
- **8.** Technology

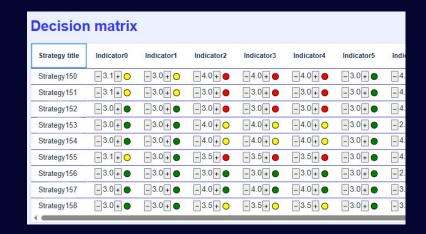
Knowledge, capacity and innovation

- **9.** Capacity building/skills
- **10.** Data, monitoring, early warning systems
- **11.** Research innovation and the science-policy interface
- **12.** Entrepreneurship

Lifestyle, behaviour, and culture

- **13.** Daily routines & choices
- **14.** Health, wellbeing, and social security
- **15.** Changes in values/culture more broadly





DISTENDER DSS: INDICATORS WEIGHTS

Decision-maker introduce the weights (wj) (degree of importance) for each of the indicators. Ranging from 0 (not important at all) to 100 (very important)

aij represent the score of strategy i respect to indicator j (how is the effect on the indicator j when we apply the strategy i)

Simple Additive Weighting (SAW) Algorithm

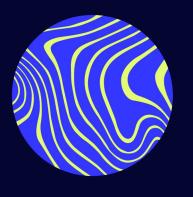
Ranking of strategies

DISTENDER TEAM

- DISTENDER is bringing together the critical mass of scientific leading institutions in the fields:
 - ☐ 1. Earth Observation
 - □ 2. Atmospheric/climate modelling
 - ☐ 3. Economics
 - ☐ 4. Urban thermal environment
 - ☐ 5. Urban and spatial sustainable planning
 - ☐ 6. Social behavior
 - ☐ 7. Active nation/association/cities

with experience in adaptation/mitigation plans

☐ 20 public-body and 10 non-public body



DISTENDER

"DISTENDER has received funding from the European Union's Horizon EU research and innovation program under grant agreement No 101056836".

Thank you!

