How Social Dimensions can be used to inform Energy Tool Development

A qualitative Analysis of Tools for Energy Communities

Julia Blanke¹, Adam Hearn², Alexandra Revez¹, Iljana Schubert², Annika Sohre²

¹University College Cork, Ireland, ²University of Basel, Switzerland

10th of October 2025

ENPOWER VISION

The overall vision of ENPOWER is to design, develop and demonstrate SSH-driven methodologies, interactive and AI-based tools and services for energy activated citizens and data-driven energy-secure communities towards a consumer-centric energy system.

ENPOWER includes 6 pilot projects which are Renewable Energy Community (REC) creators

https://www.enpower-project.eu/

ENPOWER workshops

- ENPOWER POWER IN OUR HANDS
- We ran deliberative workshops in Ireland, Austria, and Portugal to explore diverse views on **technical and social enablers** of energy communities
- Discussion themes centred around
 - Financial/economic drivers
 - Technical/operational aspects
 - Educational/communication concerns
 - Regulatory/legal framework
 - Environmental impacts

Dingle, Ireland

Lisbon, Portugal

Poysdorf, Austria

ENPOWER workshops

- Most RECs have dedicated engagement tools developed for them
- These tools are usually designed
 - to empower managing the production, distribution, and consumption of energy
 - and to support decentralization, participation, and behavioural change

Dingle, Ireland

 However, we observed a disconnect between tool developers' intentions and community members' experience

Lisbon, Portugal

Poysdorf, Austria

Observations

Tools are often developed *for* the community and **not** *with* the community leading to

- **Misaligned assumptions** Tools are often built based on inaccurate assumptions about users' digital and energy literacy
- Underutilized social insights Community insights gathered using social methodologies are rarely translated into actionable technical specifications
- **Persisting Disconnect** Developers and end-users often lack a common understanding due to knowledge disparity and differences in communication style
- **Limited adoption** Tools for energy communities are often technically advanced but fail to engage users effectively

How to address the gap?

- Current tool development is primarily driven by technical demands of the energy assets, but often ad-hoc and lacking solid foundation in relation to psychological frameworks
- If at all, models and approaches developed in the social and behavioural sciences are often used inconsistently or suffer from fragmented or unsystematic application
- Systematic integration of social and behavioural dimensions into tool design remains underexplored, mainly due to unactionable recommendations

As a first step, our work proposes an attempt to systematically **align digital tool developments with behavioural and social dimensions**

Methodology

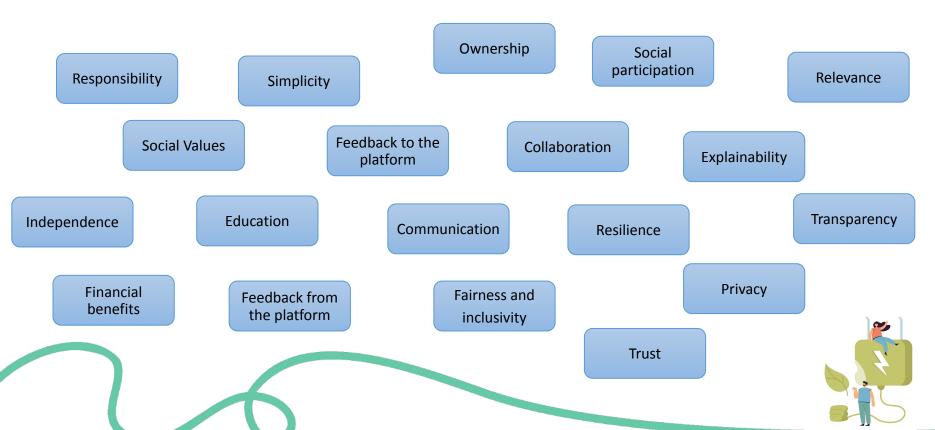
Step 1 – Identify social dimensions

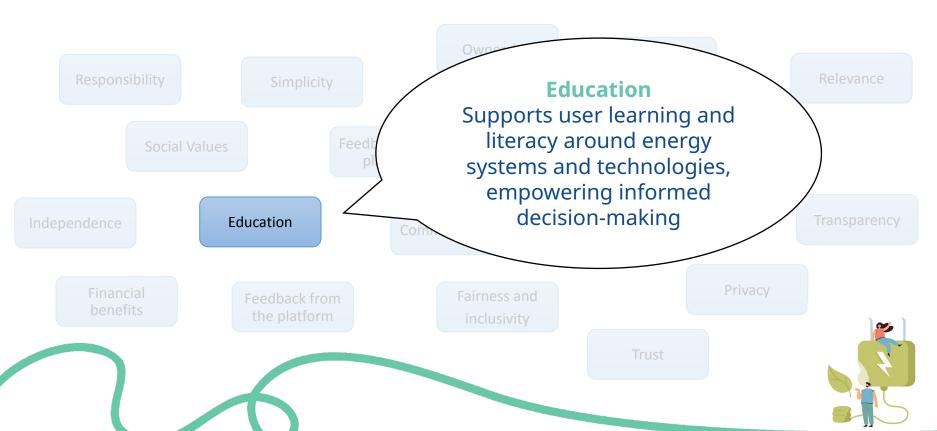
- Evaluate workshop outcomes for emerging social themes and motivational drivers
- Extract key social dimensions and specify their <u>exact</u> definitions

Step 2 - Map social categories to application features

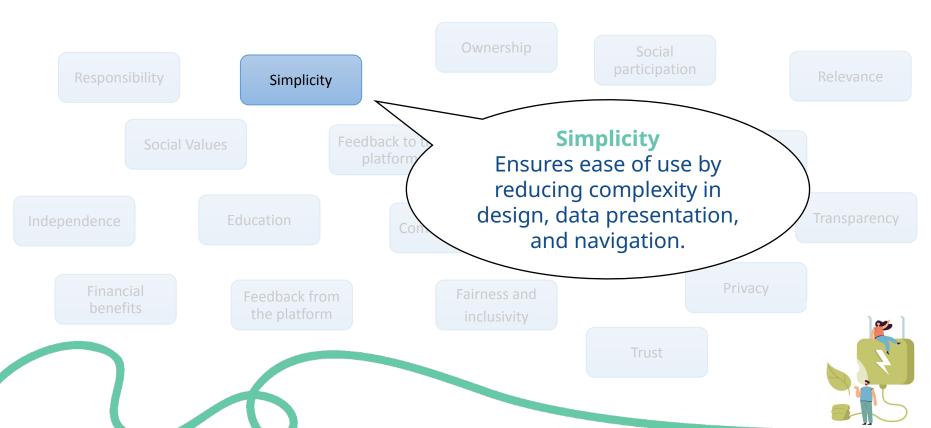
- Select one or more community tools to evaluate focusing on user interface and content
- Verify alignment with social aspects coded as included, partially included, or not included
- Average over opinion of multiple reviewers and refine the results in iterative group discussions

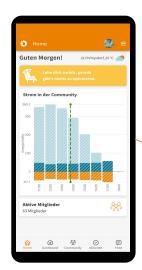
Step 3 – Derive actionable recommendations


- Mapping of features to social dimensions can serve as exemplar for future developments
- Unmapped social dimensions can be indicative of missing features that could be included



Identify social dimensions



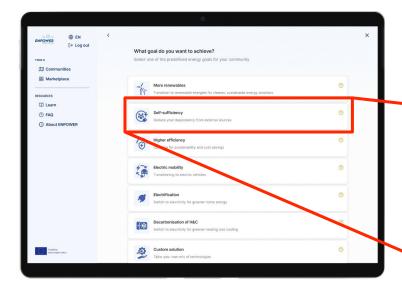


Community tools

ourpower

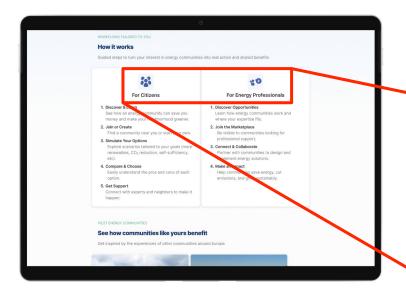
DIF ENERGIE COOPERATIVE

The OurPower marketplace provides a platform to connect small local energy producers with consumers



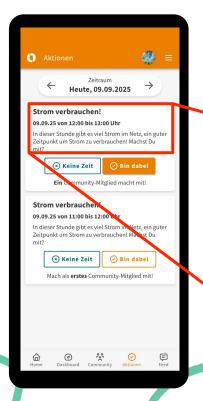
The CARTIF planning tool is designed for citizens and experts to create and develop their REC by simulating energy scenarios




Education

Supports user learning and literacy around energy systems and technologies, empowering informed decision-making

Fairness and inclusivity
Promotes accessibility and relevance for diverse user groups, considering different languages, abilities, and backgrounds.



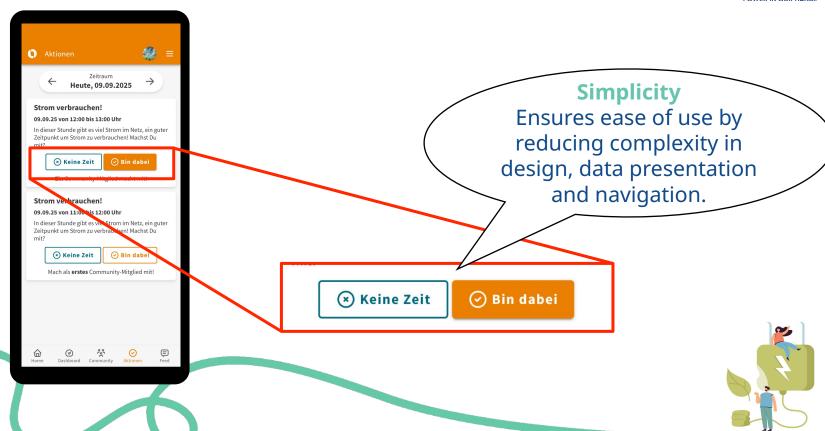
For Citizens

80

For Energy Professionals

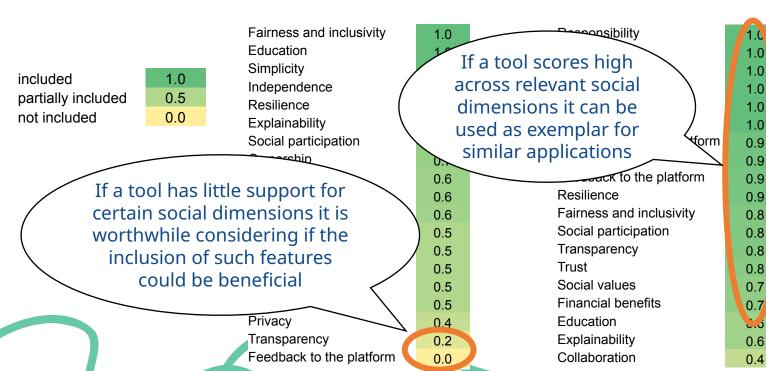
Relevance

Ensures that information and functionalities are meaningful and directly applicable to users' needs, goals, and context.


Strom verbrauchen!

09.09.25 von 12:00 bis 13:00 Uhr

In dieser Stunde gibt es viel Strom im Netz, ein guter Zeitpunkt um Strom zu verbrauchen! Machst Du mit?



Results

Preliminary conclusions

- We propose a methodology for facilitating better alignment between findings from engagement with energy communities and tool developers
- By reviewing actual tool features with respect to the social concerns observed during community engagement research we aim to provide more actionable and therefore more impactful recommendations
- We only had access to two applications in this study, which both are still under development; therefore, not all features were available yet and the presented results must only be interpreted qualitatively
- A major limitation is that alignment between features and social dimensions is subjective; however, the proposed approach tries to mitigate against this by applying clear definitions and by averaging over the opinions of multiple reviewers

References

- Yablonski, J. Laws of UX: Using Psychology to Design Better Products & Services. Book. Second Edition (2024). O'Reilly Media, Inc.
- Blanke, J., Billieux, J. & Vögele, C. Improving food shopping behaviour: A model-based review of mobile applications to assist with healthy and sustainable grocery shopping, Computers in Human Behavior Reports, Volume 4, (2021), 100147, ISSN 2451-9588, https://doi.org/10.1016/j.chbr.2021.100147.
- Wilson, C. (2014). Heuristic Evaluation. In C. Wilson (Ed.), User Interface Inspection Methods (pp. 1-32). Boston: Morgan Kaufmann. doi:https://doi.org/10.1016/B978-0-12-410391-7.00001-4
- Schubert, I., Sohre, A., Hearn, A.X., Timpano, F., Martz, J. & Giacometti, M. (2024). Enpower: Summary report on focus groups for Ourpower's ServeU-App. App features that could engage energy community members and future members. DOI: 10.6084/m9.figshare.25498189

contact: Καινοτομία iblanke@ucc.ie Δοσεις Adam.hearn@unibas.ch

