

8-10 October 2025

Milano

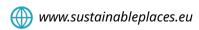
Sustainable Manufacturing WORKSHOP

From Resilient Factories to Sustainable Places

Sustainable

WUCKKSHOP

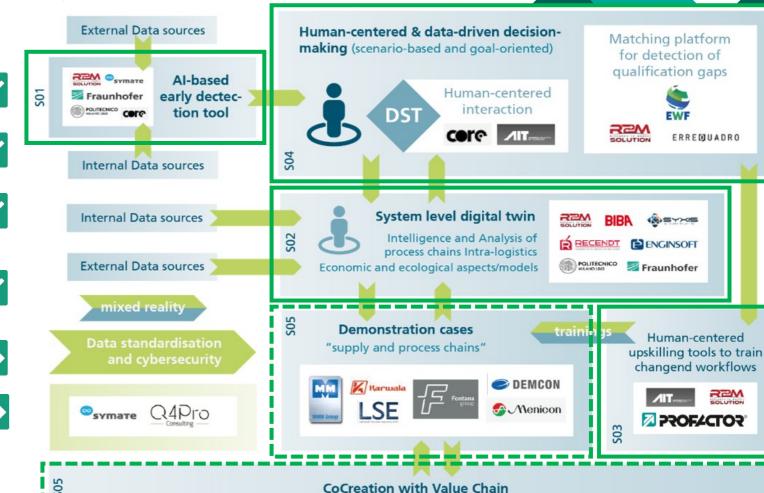
8-10 October 2025


Milano

Opening & Framing the Challenge (Rubén Alonso)

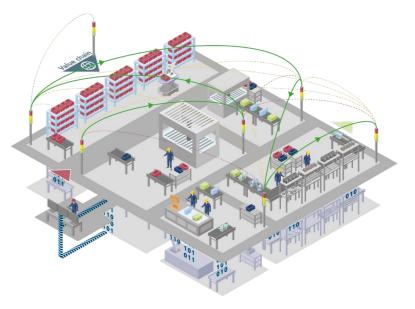
Pitches from Contributing Projects

- RaRe2 People-Centered Resilience in Factories (Alexander Dementyev, Domenico Perfido, Alessandra Sala)
- RESTORE Sustainable Remanufacturing Solutions (Diana Rodrigues)
- > **MULTIMOLD** Advanced Injection Molding for Complex Products (*Jacopo Cassina*)
- openZDM From Waste to Zero Defects: Digital, Human-Centric Manufacturing (Vangelis Lakkas)
- Platform-Zero Achieving Zero Defect Manufacturing for the Photovoltaic Industry (Raphael Pickl)


Interactive Session: Co-Design & Real-Life Impacts (Martina Di Gallo)
Key Takeaways & Closing (Rubén Alonso)

Main topics and strategic objectives of RaRe²

- Early detection tool
- System level digital twin
- Human-centered upskilling tools to train changed workflows
- Human-centred & data-driven decision making
- Demonstration Cases
- CoCreation with value chain

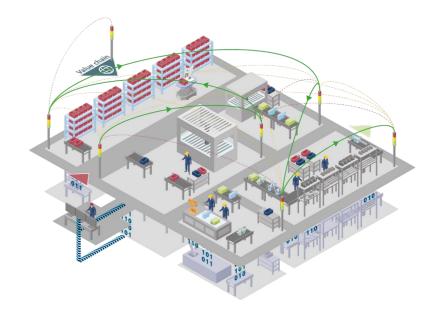


Vision and Lessons learnt:

The Holistic Ecosystem Platform based on the Holistic Methodology Framework (HMF) will enable the generation of a green wave through value chains of European manufacturers.

Lessons learnt:

- Decentralized architectures offer greater flexibility for integration with legacy systems and partner-specific infrastructures, compared to fully unified platforms.
- Early stakeholder engagement during user story development significantly improves tool relevance and pilot adoption.
- The alignment of semantic models, data structures and user-facing dashboards is critical for ensuring practical usability and acceptance by operators and planners.



From resilient factories to sustainable places

RaRe² contributes to improving the resilience and sustainability of urban areas by providing innovative approaches to problem-solving and resource utilization in manufacturing area:

- Flexibility and Resilience: By developing flexible and adaptable production processes, cities can respond more quickly to changes in the market or environment.
- Efficient Resource Use: Innovative digital solutions enable more efficient use of resources, leading to a reduction in the ecological footprint.
- Early Problem Detection: The early detection system for issues can help cities proactively manage crises such as natural disasters or economic disruptions.
- Sustainable Production Methods: RaRe² promotes the development of environmentally friendly production methods that can be implemented in urban settings to enhance sustainability.

Our partners

RaRe2 _ Building Human-Centred Resilient Factories

Emerging technologies, even those driven by AI, must remain tools that serve people
rather than replace them. In the industrial sector—where automation often takes the
spotlight—the real innovation lies in empowering human capabilities, not eliminating
them.

Human-centered design ensures that technology amplifies expertise, creativity, and safety, creating smarter and more resilient workplaces.

RaRe2 _ Building Human-Centred Resilient Factories

Global disruptions demand reconfigurable factories: **Human-centred** Workers approaches at empowered the core of through transformation upskilling

In a world of global disruptions and constant change, industries must evolve towards **reconfigurable factories** — agile systems capable of adapting to new demands, technologies, and crises.

But flexibility is not only about machines; it's about people.

Empowering workers through continuous upskilling ensures that human expertise remains the engine of innovation and resilience.

At the core of this transformation lie **human-centred approaches**, where technology enhances human creativity, safety, and well-being — building workplaces that are not just efficient, but also sustainable and inclusive

RaRe2 _ Pilots in Action

Factories adapting quickly to shocks. Flexible production lines adapting to demand shifts.

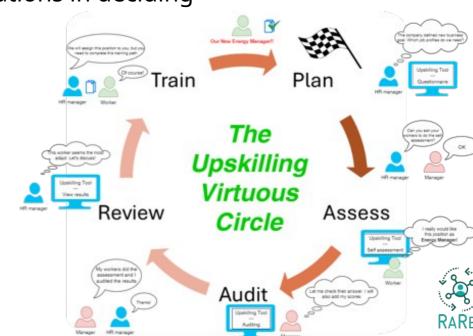
Al-driven planning supporting human decision-making.

Upskilling workers for digital and green transition

Participatory approaches: operators in design & decision-making

efficiency improvements, reduced downtime, higher worker satisfaction

RaRe2 _ Human Centered Tools


Today's companies face a dual challenge: not only to **keep up with rapid technological change**, but to ensure their **people evolve with it**.

The real competitive advantage lies in aligning human capabilities with emerging business needs.

The Skill GAP Detection Tool, developed within the Horizon Europe RaRe² project, tackles this by identifying skill gaps early and supporting organizations in deciding

whether to upskill existing workers or recruit new talent.

This proactive, human-centered approach transforms technological disruption into an opportunity for sustainable growth.

RaRe2 _ SKILL GAP DETECTION TOOL

Helps managers and workers into upskilling/reskilling process

Assesses hard/soft skill of worker & their digital gaps

RaRe2 _ PARTECIPATORY APPROACHES

- Workers, managers, and stakeholders co-design solutions
- Shared responsibility and innovation
- Collaboration across the value chain
- Empowering people and enable Sustainable Industry 5.0

Kartu is a co-creation and matchmaking platform developed specifically to use within Demo5.

- It is designed to support companies and solution providers in the context of rapid reconfiguration needs. It enables companies to quickly find solution when facing urgent changes in their production system or supply chain.
- It's a collaborative environment that empowers participants to share ideas, propose solutions, and configure new production setups—all in response to emerging and unexpected needs.
- It helps participants *find others in the value chain*, adjust configurations, optimize flows, and minimize investments, all in a single space.

DEMO 5 starts from an important concept: co-creation (collaborative creation).

KARTU supports multiple phases of the co-creation process:

- <u>Co-Ideation</u>: In the initial stage, KARTU helps gather ideas, challenges, issues, and opportunities from different stakeholders. This is essential for understanding what needs to be addressed in the value chain.
- Co-Design:
 - 1. KARTU enables collaborative solution building, bringing together diverse actors to co-create potential responses to the identified challenges.
 - 2. KARTU helps draw conclusions and consolidate contributions into actionable outcomes.

design, all in one space.

KARTU is a software platform designed to manage collaborative projects and activities within virtual rooms, with different levels of access and specific functionalities based on user roles.

The system features three main types of users:

- <u>Admin</u>: The platform administrator, responsible for creating and managing projects, assigning Room Managers (RM), archiving rooms and projects, and configuring categories.
- Room Manager (RM): A user responsible for creating and managing project rooms, including enabling/disabling features and managing participants.
- <u>Participant</u>: A user who participates in activities within the rooms they have been invited to, with permissions defined by the RM.

OBJECTIVES & HOW KARTU WORKS

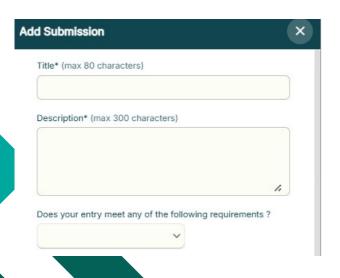
Objectives of KARTU

- Facilitate collaboration between service providers and clients.
- Support Open Calls (OC) for rapid solution identification.
- Enable rapid reconfiguration in production and supply chains.

Create an account First Name* Last name First name E-mail* Confirm emails Confirm e-mai Password* Confirm password* Confirm password Company Company declare that I have read the privacy policy i I'm not a robot accordance with Articles 13 and 14 of Regulation (EU) 2016/679* Go to login page

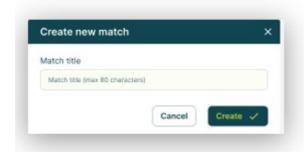
How it Works

- Each partner registers and receives a confirmation link.
- Upon login, they access a dedicated room where they can create one or more submissions.
- A submission represents a tool, service, or consultancy that supports reconfiguration.



MAIN FUNCTIONALITIES OF KARTU

1. Create Submission


Partners can easily create and manage detailed submissions describing their tools, services, or consultancies. Each submission includes all the essential information (title, description, attachments, and useful links)solutions

2.Select & Match

Clients can search, filter, and compare available submissions to identify the most suitable solutions for their specific needs.

The system uses keywords to facilitate and accelerate the matching process, helping users quickly find what best fits their requirements.

3. Draw Conclusion

After identifying relevant matches, clients can review and reflect on selected solutions directly within the platform.

They can group and annotate their findings and write short reflections for each match.

Kartu	Simona R. E
8 Participant	
Select and match	
You can select and create match	
	Order by
2 Matches Create new +	Title • ↑
Alternative Material [Edt / Modify selection &	Draw conclusion 🖉 Delete 🖰
Constants	
H. Carlos Landon Co. H. Carlos L. H. Carlos L.	
Al Optimizer for Alternative Materials	

The KARTU platform enables collaborative innovation and rapid reconfiguration across partners.

- Through shared rooms, structured submissions, and open interaction, users can co-create efficient solutions.
- The demo highlights how KARTU turns ideas into practical matches, supporting flexibility and resilience in industrial ecosystems.
- KARTU is not just a tool it's a community for smart collaboration,

Contact:

Alexander.Dementyev@iwu.fraunhofer.de

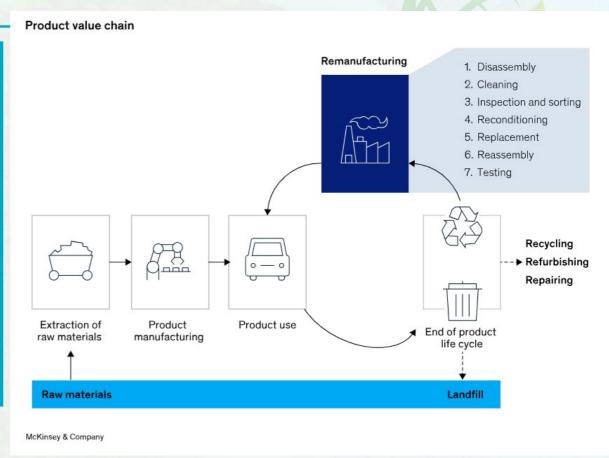
Sustainable Places 2025

Milan / 09.10.2025

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.

Remanufacturing

With roots in the early 20th century, remanufacturing has been quietly adopted into the life-cycle of complex and expensive machinery: at first, into military equipment, and later - after World War II - into consumer products such as cars. In our technology-driven world, the scope for remanufacturing has increased so that now ICT, medical equipment, tyres, renewables technologies and many other types of product can be successfully remanufactured.



Remanufacturing

cleaning, repair/replacement of damaged components, reassembly and testing, although the emphasis on each step will vary by product. The must-have feature for a remanufactured product is the assurance that the quality and performance of the item is like that of a new product. This is where it differs from repair: in repair, only the apparent fault is rectified while in remanufacturing the whole product performance is guaranteed – for a new life.

Project Summary

In the pursuit of a Circular Economy,
RESTORE seeks to revolutionize
remanufacturing practices by introducing
sustainable processes, materials, and digital
tools. The project addresses the challenges of
remanufacturing implementation by
developing advanced cladding technologies,
zero-waste materials, and a comprehensive
digital platform.

- Call and Topic/Activity:
 HORIZON-CL4-2023-TWIN-TRANSITION-01-04 –
 Factory-level and value chain approaches for remanufacturing (Made in Europe Partnership) (IA).
- GA Number: 101138775.
- Type of action: IA (Innovation Action).
- Duration: 48 months, 2024-2028.

Our Partners

Overview of the project, scientific objectives and achievements for the period, deliverables & milestones achieved

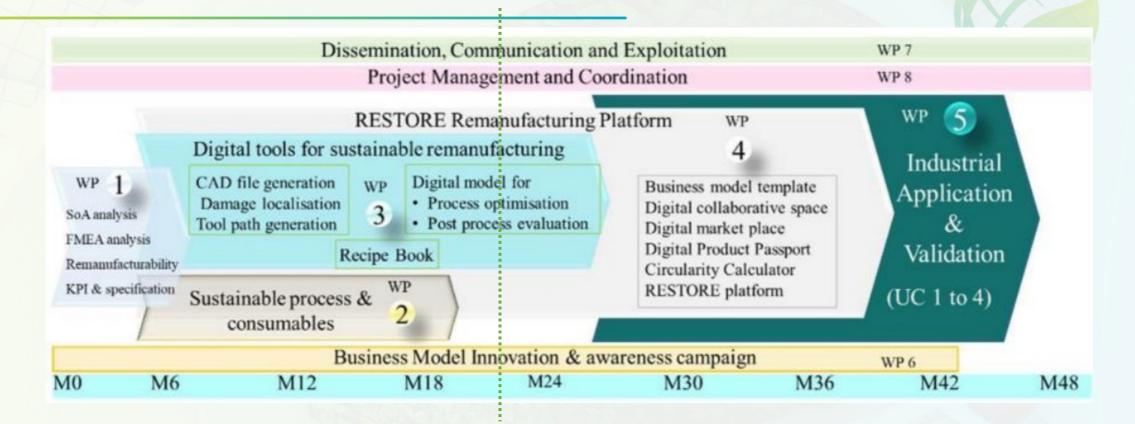
SO1: Develop a sustainable cladding process and consumables

SO2: Develop digital tools for increased automation

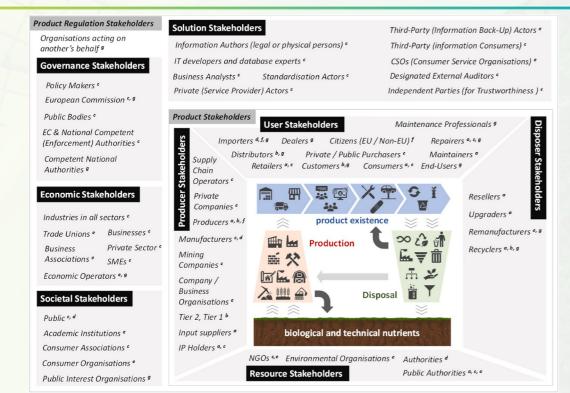
SO3: Develop a RESTORE platform for remanufacturing

SO4: Scale business model innovation for remanufautring

SO5: Demonstrate RESTORE remanufacturing technology solution and platform


Overview of the project, scientific objectives and achievements for the period, deliverables & milestones achieved – Use Cases

Project Summary



DPP Ecosystem Services

(a) Annex 18, Table 99 (b) Annex 18, Figure 1 (c) Annex 18, 'Potential stakeholders' benefits, pg 592-596 (d) Annex 18, 'Roles', Table 101 (e) Annex 18, pg 617-621 (f) Feedback Organisations (to Impact Assessment, Open Public Consultation) (g) COM(2022)142 Ch.III

RESTORE Social Awareness Campaign

The RESTORE - Sustainable Remanufacturing Surveys are live, running from September 1st, 2025, to March 31st, 2026, the surveys will collect valuable insights across Europe.

CALL FOR RESPONDENTS!

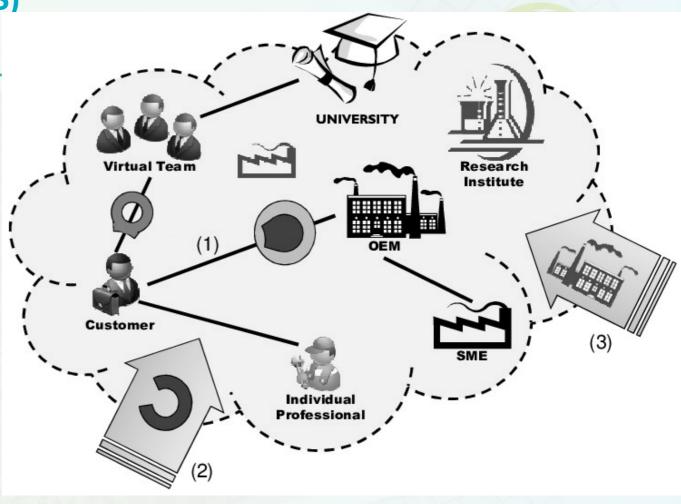
Remanufacturing Readiness in Europe

Remanufacturing is a key enabler of the Circular Economy, yet its integration into existing industrial value chains remains complex. Your insights will help shape the development of targeted support tools and strategies that meet the real needs of European manufacturers.

THANK YOU FOR PARTICIPATING!

Product as a Service (PaaS)

Product-as-a-Service (PaaS) is a business model where a provider retains ownership of a product and sells its usage or the outcome it provides, rather than the product itself. Customers typically pay a recurring fee through a subscription or pay-per-use model for access to the product and associated services. This model fosters a circular economy by emphasizing maintenance, upgrades, and endof-life recycling, benefiting both providers with predictable revenue and customers with convenient access to value without the burden of ownership.



Manufacturing as a Service (MaaS)

Manufacturing-as-a-Service (MaaS) is a digital-driven business model where companies access and utilize a shared network of manufacturing capabilities and services on a pay-per-use or subscription basis, rather than owning their own facilities. Leveraging platforms and technologies like cloud computing, AI, and digital twins, MaaS provides on-demand access to prototyping, custom fabrication, and large-scale production to increase flexibility, reduce costs, and enable agile, scalable operations.

RESTORE Social Awareness Campaign

- How do products as a service, manufacturing as a service or components as a service support both economically viable products and circularity business to increase refurbished, remanufactured, or repurposed value creation?
- What incentive structures allow more participation in the circular models and more business creation in localized environments to expand the opportunities for remanufacturing?

RESTORE Social Awareness Campaign

Sustainable Places 2025 - RESTORE

https://forms.office.com/e/jT21dCMvmu

Any Question?

"If there are any questions or if something needs further explanation, please, **don't hesitate to ask**!"

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.

Speaker

Organisation

Syxis, VšĮ

Date

Jacopo Cassina

Jacopo.cassina@syxis.eu

MULTIMOLD

Multi-functional-in-mold-electronics

Sustainable Places 2025

SYXIS

SYXIS

SYXIS, VŠĮ

Who we are:

- A Lithuanian non-profit organisation that supports innovation through digital, sustainable, and collaborative solutions.
- A Digital Sustainable company that connects SMEs, organizations, and research centers across Europe to generate and foster innovation.
- SYXIS, VŠĮ establishes and facilitates new relationships among companies operating in the field of funded research and innovation, assisting them with methods, operations, and technologies. This enables them to embrace and develop new strategies focuses on themes such as digitalization, circular economy, and networking.

Our expertise:

- Innovation in circular and digital transformation.
- Design of data-driven platforms and lifecycle monitoring tools.
- Promotion of cross-sector ecosystems for sustainable growth.
- Support in **bringing research results closer to market**.

Project name: Multi-functional In-Mold Electronics

Project acronym: MULTIMOLD

Type of action: HORIZON Innovation Actions

Starting date: 1 January 2024

End date: 31 December 2027

Duration: 48 months

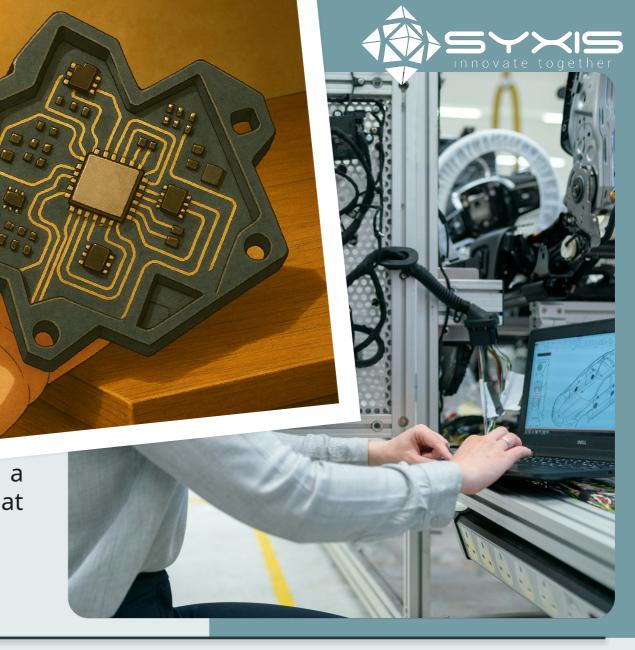
Max grant amount: 5 760 076.77

Objective: To develop the next generation manufacturing process for **products with complex geometries** based on **in-mold electronics** with a robust, weather-resistant material concept that provides **inherent recyclability by design**

Project name: Multi-functional In-Molc

Project acronym: MULTIMOLD

Type of action: HORIZON Innovation Ac


Starting date: 1 January 2024

End date: 31 December 2027

Duration: 48 months

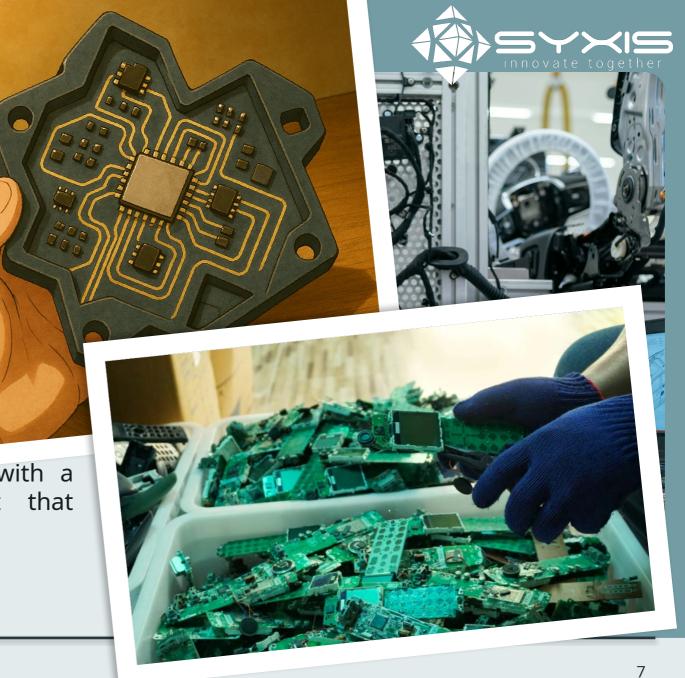
Max grant amount: 5 760 076.77

Objective: To develop the next manufacturing process for **products w geometries** based on **in-mold electronics** with a robust, weather-resistant material concept that provides **inherent recyclability by design**

Project name: Multi-functional In-Molc

Project acronym: MULTIMOLD

Type of action: HORIZON Innovation Ac


Starting date: 1 January 2024

End date: 31 December 2027

Duration: 48 months

Max grant amount: 5 760 076.77

Objective: To develop the next manufacturing process for products w geometries based on in-mold electronics with a robust, weather-resistant material concept that provides inherent recyclability by design

Partners

SYXIS, VŠĮ Joanneum Research (Coordinator)... 2 1 **IMEC - Interuniversitair Micro-R2M Solution** 3 4 **Electronica Centrum Montanuniversitaet Leoben Standex Engraving Moldtech** 6 5

Partners

Schneider Electric industries sas Nanogate 8 Fraunhofer IZM and Fraunhofer IV 9 **Eologix Ping** 10 Htp high tech plastics gmbh 11 Click to edit Master text styles

Pilot 1: HTP High Tech Plastics

Who they are:

- A company specializing in advanced injection molding and high-precision plastic comp
- They work in industries such as automotive and electronics.
- Experts in 3D forming, over-molding, and integrating electronics into plastic parts.

What they do in MULTIMOLD:

- Develop and manufacture demonstrator components using In-Mold Electronics (IME) and In-Mold Labeling (IML).
- Lead the over-molding process of 3D-formed films with printed electronics.
- Collaborate on material selection, surface finishing, and component testing.

Goals:

- 1) Develop a scalable injection molding process for electronics-integrated compo
- 2) Ensure tactile functionality and surface durability.
- 3) Apply circular-by-design principles (separation, recyclability).
- 4) Use digital **tools and data to improve production** quality and efficiency.

Expected outcomes:

- Functional prototypes ready for industrial testing.
- Clear guidelines for industrial adoption of MULTIMOLD technologies.

The 1st MULTIMOLD use case **Industrial Control Panel (IOI).**

In the first 18 months of the project An industrial HMI was also created, combining haptic feedback with a 3Dformed flexible PCB. This allowed for a compact design with high integration of LEDs and piezoelectric sensing in limited space.

Pilot 2: Pilot: Schneider Electric

Who they are:

- A global leader in energy management and industrial automation.
- They provide smart solutions for factories, buildings, and infrastructure.

What they do in MULTIMOLD:

- Act as an industrial end-user, testing MULTIMOLD operator interface panels.
- Help develop advanced control panels with touch features and durable surfaces.
- Provide real-world requirements and feedback for final products.

Their goals:

- 1) Validate functional and **industrial design of IME-based interfaces**.
- 2) Ensure reliability in **harsh conditions** (wet, dusty, frequent use).
- 3) Test disassembly and **recyclability** of components.
- 4) Support **scalability** and industrial use of the technology.

Expected outcomes:

- Smart, sustainable operator interfaces.
- Real-life feedback for improved product design and usability.

The 2nd MULTIMOLD use case: **Automotive HMI.**

In the first 18 months of the project an automotive HMI prototype was developed with integrated piezoelectric sensors and illuminated touch buttons, ensuring reliable user interaction even outside the car and in high humidity conditions.

Pilot 3: Eologix-Ping

Who they are:

- An innovative SME focused on sensor technology for wind turbines and smart structure
- Their systems help monitor turbine condition and improve maintenance strategies.

What they do in MULTIMOLD:

- Use MULTIMOLD to embed sensors directly into wind turbine blades during production.
- Develop and test miniature smart sensors for temperature, vibrations, and stress.
- Validate sensor performance in real environmental conditions.

Their goals:

- 1) Demonstrate that **sensors can be embedded** using IME technology.
- 2) Enable real-time, non-invasive monitoring of turbine blades.
- 3) Improve safety and maintenance efficiency of wind turbines.
- 4) Prove sensors can work in extreme weather conditions.

Expected outcomes:

- Smart wind blades with built-in monitoring.
- Progress toward **predictive maintenance** in renewable energy.

The 3rd MULTIMOLD use case: Wind Turbine Sensor Unit.

A first-generation condition monitoring demonstrator successfully showed the overmolding of sensitive electronics, such as solar cells and batteries. The system withstood both lab and field testing under the harsh environmental conditions found on a wind turbine blade.

SYXIS in MULTIMOLD

Role and main objectives:

- Responsible for data management and the project's digital communication infrastructure
- To ensure interoperability, traceability, and reusability of all innovations developed within the project.

Key responsibilities:

- Development and continuous update of the Data Management Plan.
- Ensure that all project outcomes comply with the FAIR principles: Findable, Accessible, Interoperable, Reusable.
- Development of **rEUse platform = A Scalable Platform for Circular Data Management**
- Leadership of WP6, focused on creating communication interfaces with Manufacturing Execution Systems (MES).

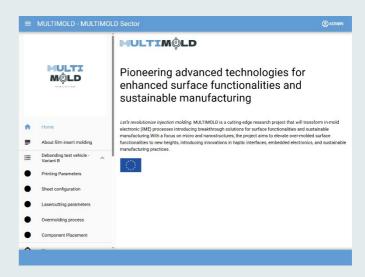
rEUse platform:

Cloud-based, multi-sided platform, designed for data-driven circular economy practices.

It supports the management of: Materials, Components

It supports the management of: Materials, Components, Products, and Waste streams

- No-code interface easy to use, no programming needed
- Multi-user networking connects actors across the value chain
- Integration-ready supports MES, Digital Product Passport (DPP), and REST APIs
 - Supports technical documents e.g. CAD, design files
 - Advanced security includes tools like Keycloak authentication



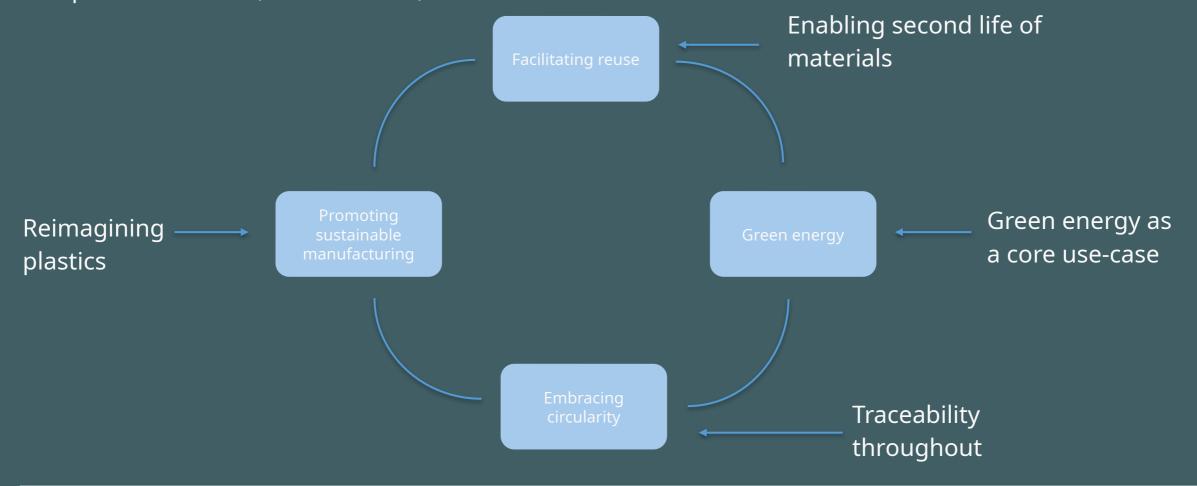

SYXIS in MULTIMOLD

rEUse platform: why we chose rEUse for the MULTIMOLD project

- Enables traceable, circular production
- Replaces outdated tools like Excel
- Drives collaboration across industries
- Facilitates reuse, recycling, repurposing, and remanufacturing
- Supports sustainability and regulatory compliance

Expected key impacts

- 1) <u>Increased production efficiency</u> through improved over-molding processes and digital control.
- 2) <u>Enhanced product functionality</u> with smart surfaces, sensors, and advanced user interfaces.
- 3) <u>Support for circular economy</u> via recyclable designs and material traceability.
- 4) Robust digital infrastructure enabling data interoperability and integration with digital tools.
- 5) Reduced costs and faster development through innovative manufacturing techniques.
- 6) Stronger EU industry with cross-sector applications and sustainable innovation.



Expected key impacts

Impacts to workers, communities, urban life

Thank you for your

Sartatention! Name and Jacopo Cassina

Surname: Partner name (short):**SYX**

Email Jacopo.cassina@syxis.eu

Phone number:

From Waste to Zero Defects: Digital, Human-Centric Manufacturing

/angelis Lakkas-Pyknis

Sustainable Places 2025, 09.10.2025, Milano, Italy

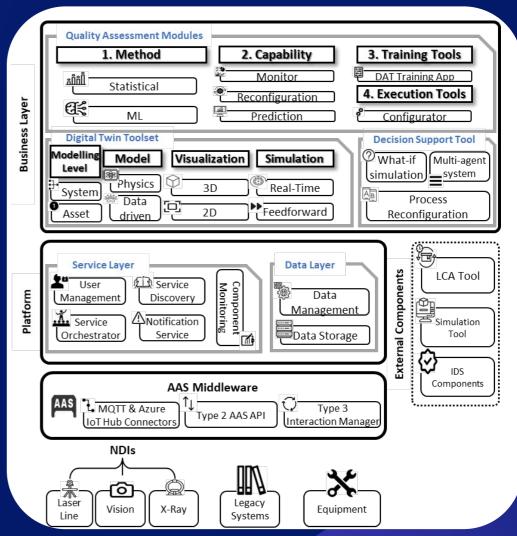
- Industrial context
- Problem definition
- The openZDM approach
- Real-world application of openZDM
- The openZDM impact so far
- Conclusions & value proposition
- Acknowledgement
- Questions

Contents

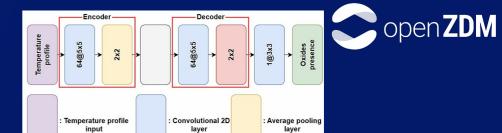
- Modern manufacturing operates with
 - Shorter lead times
 - Tight quality margins
 - Increased automation adoption

- The ZDM philosophy aims to
 - Enable environmental & economic sustainability
 - Ensure human-in-the-loop decision

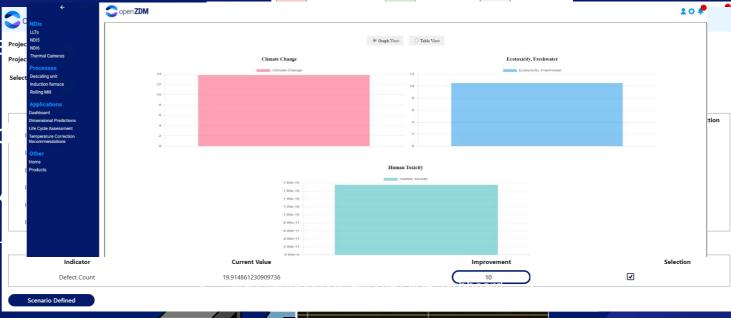
Industrial context



- Traditionally quality control is a manual process
- Defects are identified after their generation leading to
 - Worsen sustainability
 - **Reduced customer satisfaction**
 - Limited reconfiguration capacity
- Human-centricity has
 - * Been gradually replaced by automation Problem definition



- An AAS-based open platform with integrated
 - Non-destructive inspection (NDI) systems
 - Digital twins for system simulation
 - AI-based quality assessment modules
 - A decision-support system for process adaptation
 - LCA for inline environmental assessment
 - eXplainable AI (XAI) for human-centric decision-making


The openZDM approach - High level representation

Step 2 Data acquisition & Step 3 - Quantification cueffed evaluation

- Sastaitigattieitfyrtsrændefedt vjærænragtidefe
- Using inline LCAs ieentgika twins provide the system
 - Environmental impact is quantified

 - ❖ டிறேச்பெடுக்கொல்கையின் செய்யில் செய்யில்

IR-haseden Pfieart break doxing by the tenengera ure

The openZDM approach - Achieving sustainability

Sustainable Places 2025, Milan, Ital

- Human-centricity is ensured via XAIenabled feedback provision
 - XAI explains quality assessment modules& digital twin outcomes
 - Humans can provide feedback to the system & override decisions

✓ Improves the system performance

XAI Framework -Human-centric interaction layer-Feedback Feedback categorisation analysis Generated corrections Generated explanation Rules Shapley values Explanation application calculation XAI Layer Defect predictions Behaviour Predictive Analytics Digital Twin Process behaviour Digital twin Predictive Real-world Defect data AI model AI model predictions Product behaviour Data Acquisition Layer – Real World Data Process Process Manufacturing System

The openZDM approach – Human feedback integration, Ital

openZDM is applied into 5 industrial pilots

VDL Weweler
Trailing arm
production
process
demonstrator

Volkswagen
Autoeuropa
Vehicle body
shop and
final
assembly
demonstrato

VIDRALA
Bottle
manufacturin
g
demonstrator

SONAE
ARAUCO
Decorative
board
manufacturin
g
demonstrato

APTIV EV battery production demonstrato r

Real-world application of openZDM

The demonstrated impact of openZDM so far includes

Reduction in battery welding defects by 17%

Improvement of cost of poor quality on revenue in specific pilots by 5%

Reduction of costs due to parts misalignment by 8%

Reduction of time needed for products inspection by 5%

During experiments, more than 80% of operators deem explainability

The openZDM impact so far

Conclusions

- ZDM can act as an enabler of sustainability by
 - Integrating NDI and AI-based solutions in manufacturing lines
 - Ensuring that process adaptation is automated while remaining humancentric

Value proposition

- ✓ Continuous defect identification and process reconfiguration resulting in defect reduction & sustainability improvement
- ✓ Human-centric system with human-feedback in the loop for continuous

Correlation & value proposition

Scope

openZDM is an initiative funded by the European Commission under the Horizon Europe programme

Aim

to provide an innovative state-of-the-art integrated open platform that will combine advanced ICT solutions and innovative non-destructive testing, to support production networks' zero-defect processes.

		<u>objectives.</u>		
To develop	To develop	To define	To develop	To test and validate
and deploy an open	and deploy Digital	AI-based	and integrate NDI	s the integrated
platform based on	Twins	data-driven	for zero	solution
RAMI4.0 and AAS	for online process	quality	defects.	to five industrial
standards.	evaluation	assessment		pilot cases.
	and adaptation.	approaches.		

Ohiectives

Acknowledgment Sustainable Places 2025, Milan, Italy

Questions?

Thank you!

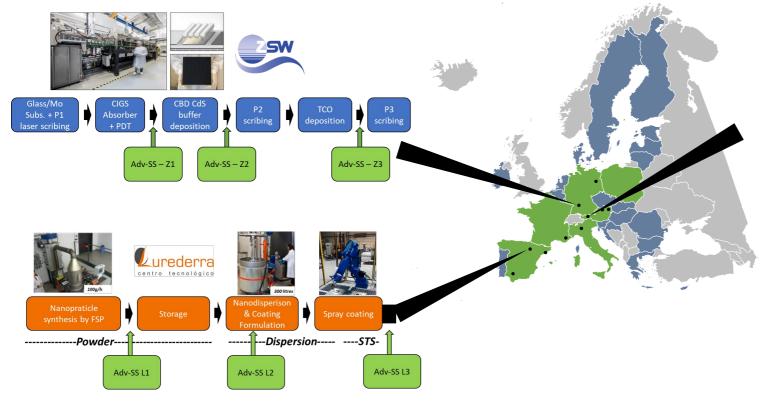
Platform-ZERO

ACHIEVING ZERO DEFECT MANUFACTURING FOR THE PHOTOVOLTAIC INDUSTRY

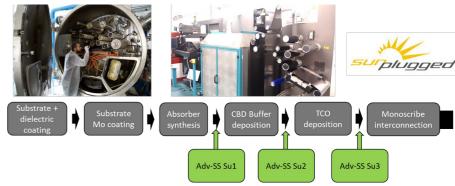
SUSTAINABLE PLACES 25 - 09/10/2025
RAPHAEL PICKL

ABOUT THE PROJECT

- Platform-ZERO develops a new customizable inline process monitoring platform, supported by Artificial Intelligence, for achieving zero-defect manufacturing for the PV Industry
- Project innovations will be tested in several industrial pilot plants across Europe
- The project aims to:
 - ✓ Substantially lower PV fabrication costs
 - ✓ Improve production quality of PV devices



- Four research centers and one university with a strong knowledge in the development of spectroscopic methodologies, imaging, artificial intelligence and data management
- Two research centers with strong know-how in advanced PV technologies and with industrial pilot line facilities
- A Metrology SME with strong know-how in the implementation of industrial process monitoring applications
- **Two SMEs** in charge of dissemination, exploitation and communication actions



THE CONSORTIUM

Preindustrial environment

R&D Industrial environment

OBJECTIVES

1) Development of advanced sensor stations

2) AI system for autonomous monitoring and control

3) Implementation of a big data management infrastructure and control system

4) Implementation and installation of functional process monitoring platforms

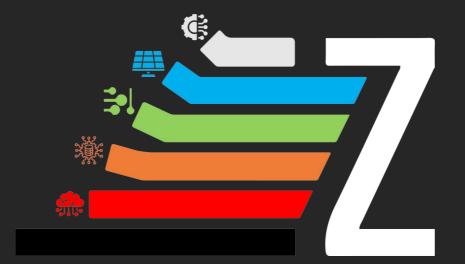
5) PV manufacturing optimization

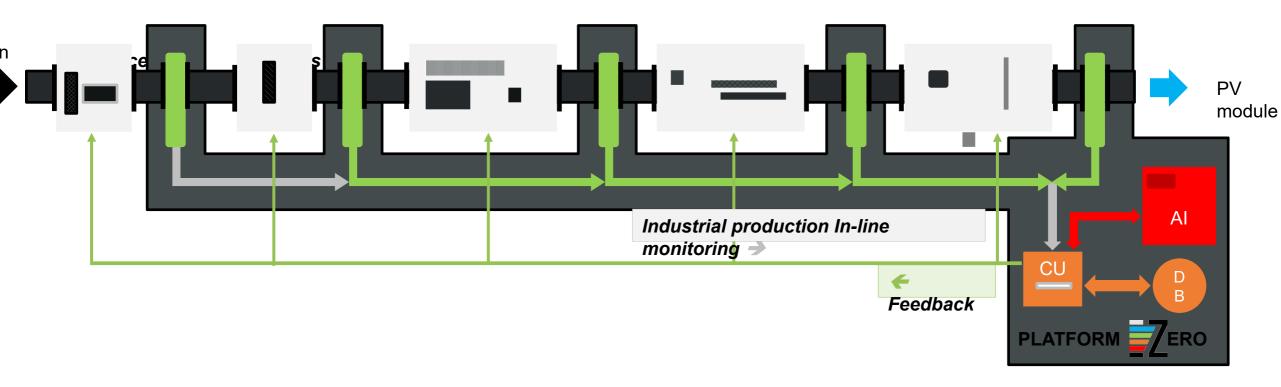
OBJECTIVES

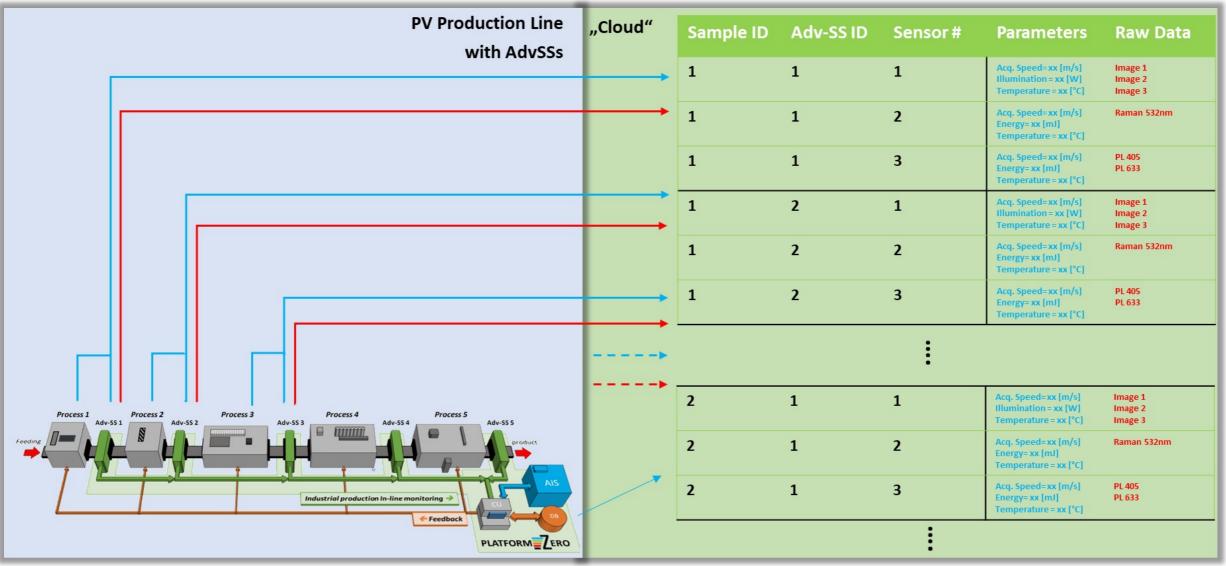
1) Development of advanced sensor stations

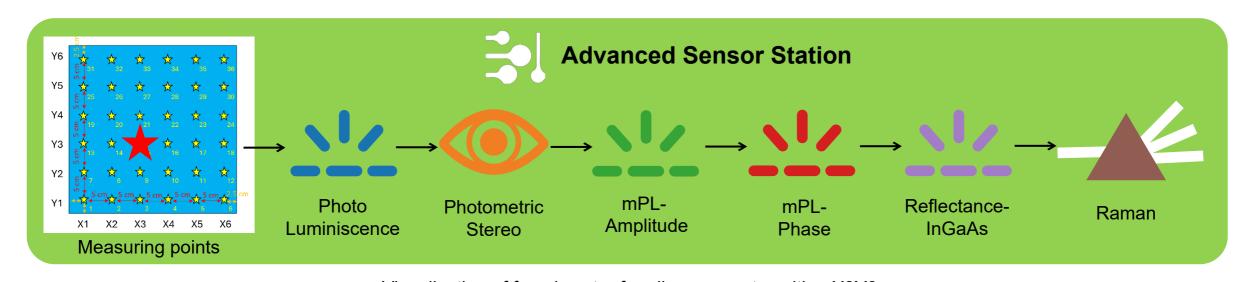
2) AI system for autonomous monitoring and control

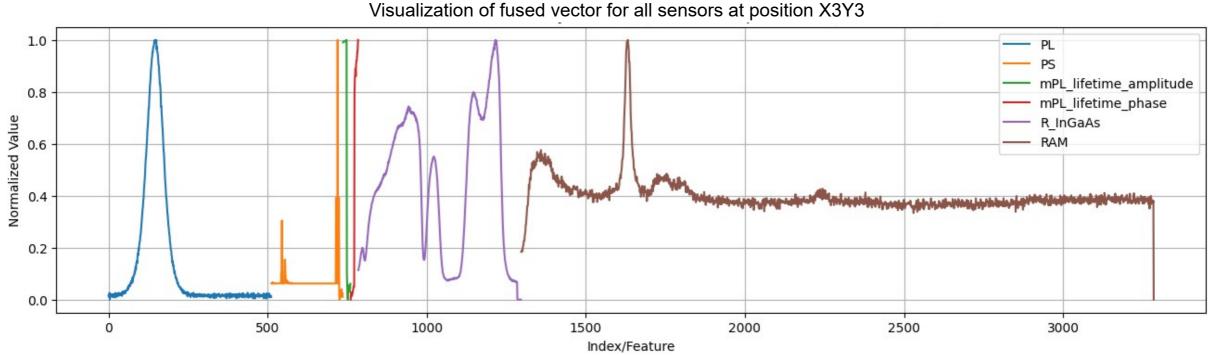
3) Implementation of a big data management infrastructure and control system




4) Implementation and installation of functional process monitoring platforms


5) PV manufacturing optimization





Data acquisition table

Modular Data-Fusion

Z Al Overview

Method:

- Algorithm: Linear Discriminant Analysis (LDA)
- Labels: Standard / Deviation + / Deviation (±2 % process variation)
- **Samples:** < 1000 sample points
- **Split**: 20 % train / 80 % test

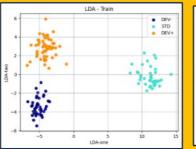
Results:

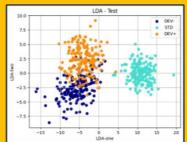
- ≈ 90 % accuracy distinguishing standard vs. deviation samples
- Demonstrates system robustness and effective data fusion

Key Takeaways:

- Different sensors more applicable for different stages
- Flexible sensor integration confirmed
- Modular, scalable architecture validated

Results of LDA


Saule SAU3

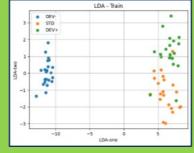

S622 -2%

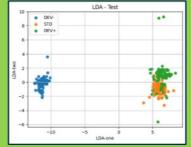
S615 STD

S620 +2%

Train 20% : Acc. = 1.0

Test 80% : Acc. = 0.912

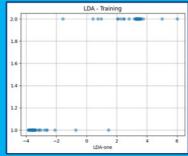

ZSW Z1

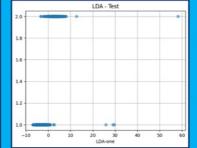

10137254: +2.5%

10137211: STD

10137190: -2,5%

Train 20% : Acc. = 0.953


Test 80% : Acc. = 0.9117


Sunplugged SUN3

PZC4-ug1-1: STD

PZC4-ug1-2: thick

Train 20% : Acc. = 0.979

Test 80% : Acc. = 0.935

THANK YOU, GET IN TOUCH!

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Health and Digital Executive Agency (HADEA). Neither the European Union nor the granting authority can be held responsible for them.