

3D Printing System for Façade Restoration

Overcoming low productivity and integrating BIM technologies

Juan Gabriel Secondo | Technical Managing team | Universitat Politècnica de València

Co-developers

Presentation Layout

Context and previous experiences
Work carried out until now

INPERSO research scope and actions
Research carried out within the Horizon EU Proje

Performed testsPositioning system and extrusion tests

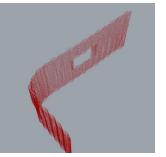
ConclusionsMain remarks and future Works plan

Context

Current situation and technology potential

- Construction faces a big challenge in adopting new processes and technologies
- Industry 4.0 is crucial for harnessing technologies that help accelerate processes, improve quality, and increase on-site safety
- Prefabrication already provides a high level of quality and control, but on-site work can provide flexibility and adaptability.
- Integrating digital manufacturing systems into construction can merge industrial precision and speed, with the adaptability of traditional methods

Traditional mortar application execution



Previous experiences

Parametric Desing test 2019

UPV House 2018

House 2.0 2021

Vertical printing experience

3DCONS

 Initial work led by Vías y Construcciones (ACS Group), it ran from 2015 to 2018 with partners like LafargeHolcim, Saint-Gobain, CYPE, among others, funded by CDTI and FEDER under the CIEN program in Spain

Vertical printing prototype

Horizon Europe. INPERSO Project

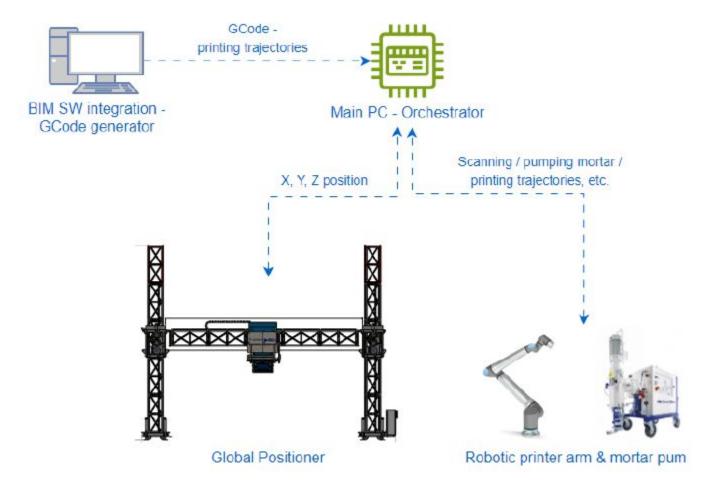
Main objectives

- INPERSO EU project (Industrialised and Personalised Renovation for Sustainable Societies) features a comprehensive deep renovation program.
- Consists of a renovation model featuring digitalisation and new technologies requiring TRL level-up.
- Focuses mainly on residential buildings with heritage value.
- Technologies are being installed in three demonstration cases, subject to a three-year monitoring for the pre, during, and post retrofit stages.

DC#1. Public rental housing, Spain

DC#2. Social shelter, The Netherlands

DC#3. Social shelter, Greece



3D printing objectives within INPERSO

Robotic, vertical façade 3D printer integration

- Define system requirements and conceptual design
- Develop and detail the prototype design
- Manufacture, test, and integrate subsystems
- Commission and validate the integrated system

3D Printer Subsystems

Global positioner

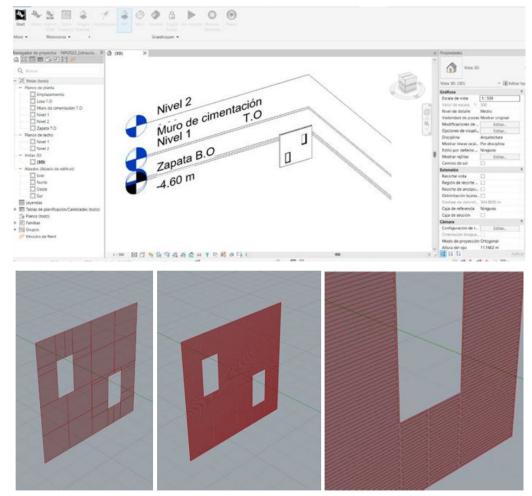
- The Global Positioner moves the Robotic Printer Arm along the X, Y, and Z axes using three motorised trolleys with rack-and-pinion mechanisms for precise façade positioning
- Stability and precision were achieved through a robust displacement system inspired by mast climbing work platforms
- Iterative FEM analyses ensured structural stiffness and evaluated system scalability, particularly along the X axis

Positioner Subsystem

Robotic printer & printable materials

- UR20 robot, material pump, and an industrial PC were integrated as the main system
- The setup ensured full connectivity and control through preliminary subsystem tests
- The Flow-Matic extruder with dual cameras enabled remote monitoring via 3D-printed mounts
- Webots simulations modelled and tested subsystem and full-system performance

Laboratory setup



Software for BIM-CAM integration

- Segregation into smaller áreas for better definition of trajectories
- Trajectories definition that aim for the shortest time and best adherence and surface quality
- Openings conditions consideration

BIM to G-code process

Printing process

- Laboratory tests carried out for controlled printing areas conditions
- Thickness variation ensuring the best possible execution and waste reduction
- The aim is to perform with little human assistance

Initial material deposition tests

Optimised material deposition

Main conclusions

Printing process

- The technology aims for existing buildings, focusing on one of the biggest challenges in construction, energy renovations
- Insulating materials may be used for obtaining better energy performance
- The collision identification makes it suitable for identifying pre-existing facilities and overhanging elements located in the façade
- BIM-workflow integration enables a more practical coordination and flexibility in the designs

Thank you for your attention For more information, scan the QR code

FUNDING: This study was part supported by the INPERSO - Industrialised and Personalised Renovation for Sustainable Societies - Horizon Europe funded project (number 101069820)

