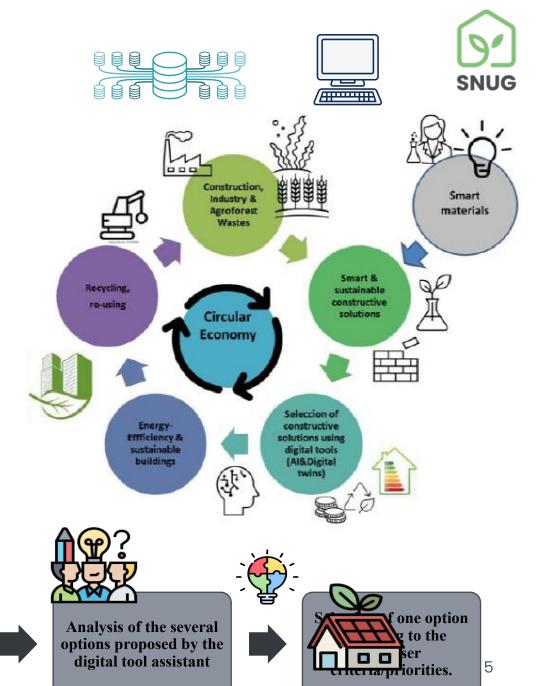


Partners

Presentation order:

→ SNUG project. Overview.

Development of sustainable and energy-efficient solutions for buildings.


Our mission is clear: maximize building energy efficiency and minimize greenhouse gas emissions, enabling a greener future for communities.

Objectives:

SNUG aims to **develop and demonstrate a methodology to help** builders, architects, engineers, etc., **in the selection** of the most appropriate set of **thermal insulation materials or constructive solutions** by the development of:

- Digital Tool Assistant (DTA) based on Al and virtual simulation.
- A set of sustainable-by-design thermal insulation materials and lightweight prefab solutions.
- A database of thermal insulation materials, including metrics and LCA information.
- A Digital Building Logbook

Specific objectives:

SO1. Optimize advanced and durable sustainable-by-design thermal insulation materials and multifunctional prefabs.

AERATE SUSTAINABLE CONCRETE (CTC)

SUSTAINABLE MORTARS WITH SMART ADDITIONS FOR HEATED FLOORS (HIOF)

AEROGEL PROCESSED FROM WASTES (UST)

BIOMASS-BASED BOARDS AGGLOMERATED WITH BIOADHESIVES (AIDIMME)

MATERIAL SOLUTIONS

Design, formulation and characterization of sustainable & smart thermal insulation materials

Raw Materials

- Biomass ash (rice husk)
- Recycled diatomite diatomite, recycled diatomites from beer and wine).

Products

- Blended Portland cement
- · Blended cement with diatomites
- · Self leveling mortars

Applications

- · Self leveling mortars
- · Rendering mortars
- Autoclaved agrated concrete blocks

Phase change materials

- Microtek
- Fraunhofer

Characterization

- Workability
- · Rheology
- Hydration kinetes

Applications

· Self leveling mortars

- C&D waste
- Stucco mortar

Products

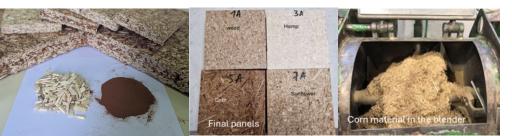
- · Pureflex board waste based aerogel AGI)
- . C & D waste-based aerogel (KEEY)
- · Cavity wall filling containing aerogel from KEEY
- · Lime based plasters containing aerogel from KEEY

Raw Materials

- Biomass (rice husk, hemp, posidonia oceanica, sunflower)
- Bicadhesives (Tannins, Lignin and

Products

- · Particle board made of hemp and tannin based bloadhesive.
- · ETICS sandwich panel


Applications

- Interior insulation elements
- ETICS System

Specific objectives:

SO2. Industrialization of advanced thermal insulation materials and multifunctional products developed at a pilot scale.

KPI's:

- 1. Environmental KPI's
- 2. Thermal Performance KPI's
- 3. S&S Performance KPI's
- 4. Economical KPI's

Specific objectives:

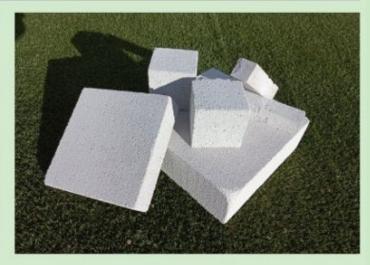
SO3. Development of Digital Tool Assistant (DTA) able to select the best thermal insulation solutions and installation.

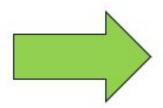
SO4. Demonstrate in three real buildings of different features, use and climatology, methodology proposed for the selection of best solutions adapted.

Scandinavian climate

Continental climate

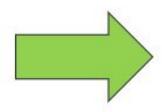
Mediterranean climate





Aerated eco-concrete blocks based on blended OPC and geopolymers (CTCON) Analysis and Design Optimization

Leaders and participants: CTCON, BECSA, CRH.


1 New cements and geopolymers with local waste.

1. Common applicationsMortars.BECSA/CTCON/HIOF

2 New cements and geopolymers with local waste.

2. AAC Block. CRH/CTCON

New low carbon footprint cements for common applications

1 GGBFS geopolymers

2 Ordinary Portland cement

WITH 40% LOCAL WASTE

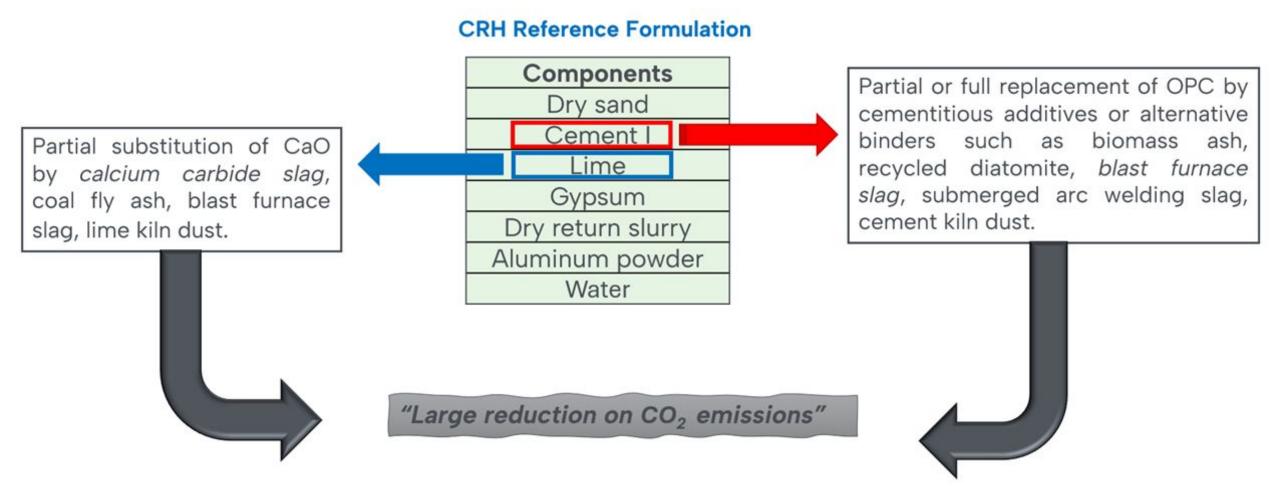
Biomass ash

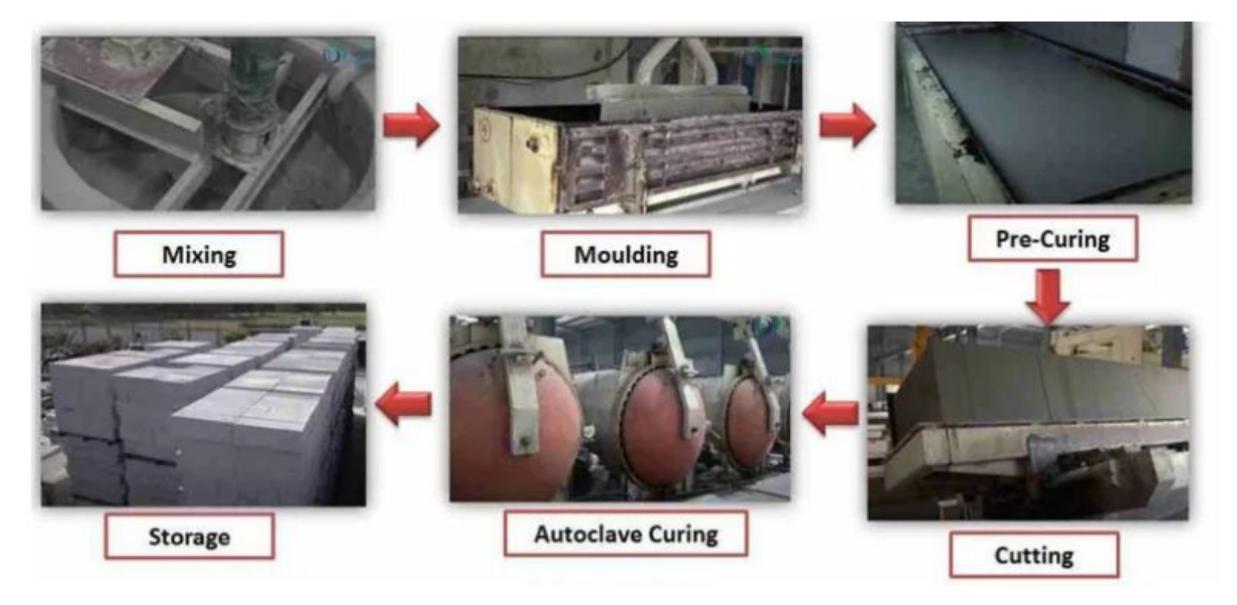
Recycled diatomite

SAW

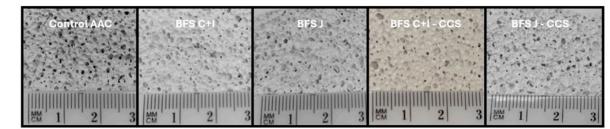
		Compressiv e strenght 28 days	Compressive strenght 90 days	Initial Setting (min)	Final Setting (min)	Capillary water absorption test (g/mm2)	Capillary water absorption rate %	Drying Shrinkag e (%)	Slump (cm)
Blended cement	41,4	53,7	66,9	201	362	0,0142	-1,7	-0,067	14,5
Geopolymer	23,6	54,8	78,3	151	270	0,015	-16.1	-0.127	14,3

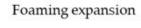
Wall cladding:

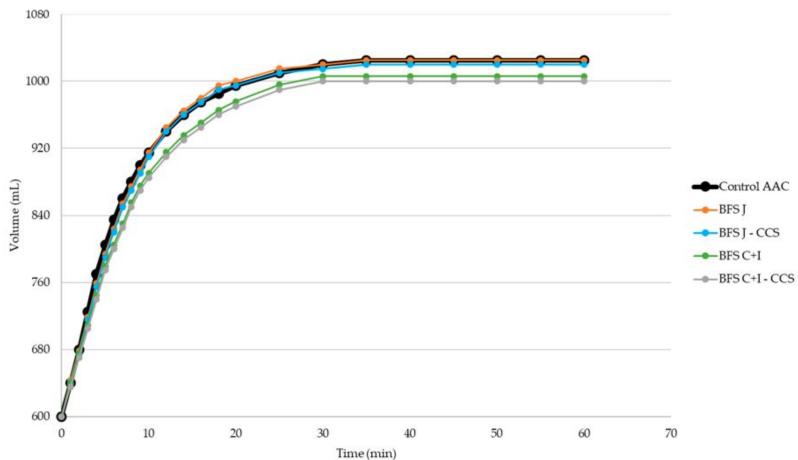

PROPERTY	STANDARD	VALUE
Compressive strength	EN 1015-11	≥ 6 MPa
Adhesion after climatic conditioning cycles	EN 1015-21	≥ 0.3 MPa
Water absorption	EN 1015-18	$\leq 0.20 \text{ kg/(m}^2 \cdot \text{min}^{0.5})$
Water permeability after climatic conditioning cycles	EN 1015-21	≤ 1 ml/cm ² after 48h
Water vapour permeability	EN 1015-19	μ ≤ 1 5
Thermal conductivity	EN 1745:2012	≤ 1 W/m·K
Reaction to fire	EN 13501-1	A1 class



A novel approach on autoclaved aerated concrete production from waste sources was performed.






Mix	OPC (wt.%)	Lime (wt.%)	CCS (wt.%)	BFS J (wt.%)	BFS C + I (wt.%)	Sand (wt.%)	Gypsum (wt.%)	GAAC-CW (wt.%)
Control AAC	28	9	0	0	0	44	4	15
BFS J	(=)	9	-	28	- - 2	44	4	15
BFS C + I	-	9	-	-	28	44	4	15
BFS C + I—CCS	0	9	9	0	23	41	4	14
BFS J—CCS	0	9	9	10	0	50	5	17

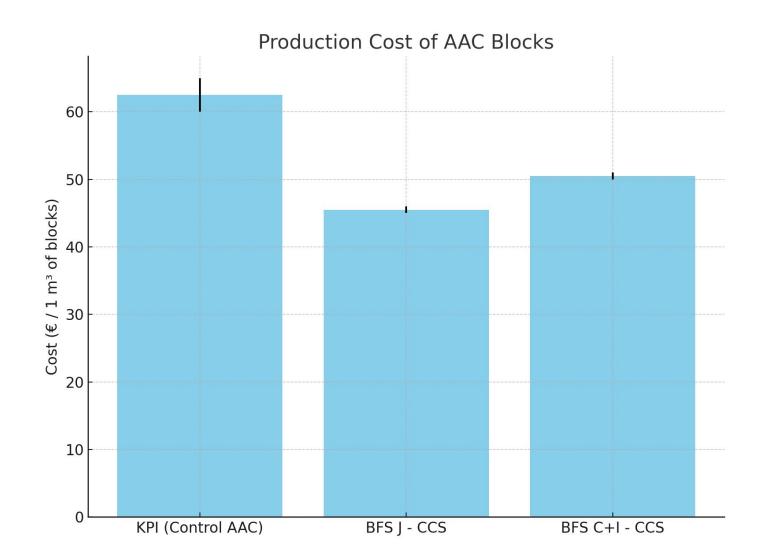
Mix	Apparent Density [kg/m³]
Control AAC	425
BFSC + I	428
BFS J	433
BFS C + I—CCS	420
BFS J—CCS	441

Mix	Compressive Strength (MPa)		
Control AAC	2.51		
BFS C + I	1.52		
BFS I	1.33		
BFS C + I—CCS	2.27		
BFS J—CCS	2.49		

		Pre-Curing		After the	Hydrothermal '	Freatment
Mix	Portlandite (%)	Quartz (%)	Tobermorite (%)	Portlandite (%)	Quartz (%)	Tobermorite (%)
Control AAC	9.0	29.2	0.0	0.2	16.7	40.6
BFS C + I	1.4	29.5	0.0	0.2	21.9	28.5
BES I	3.6	29.2	0.0	1.3	17.3	27.8
BFS C + I—CCS	8.3	30.6	0.0	0.7	14.5	39.1
BFS J—CCS	7.9	28.5	0.0	0.8	18.2	36.8

01
SNUG

indicator/property	KPI (Control AAC)	BFS J-CCS	BFS C+I - CCS	GOALS
	technical I	NDICATORS		
	600; 650 ± 1.5	600; 650 ± 1.5	600; 650 ± 1.5	
D imensions (mm)	75; 100; 125; 150; 250; 300; 350; 375; 400 ± 1.5	75; 100; 125; 150; 250; 300; 350; 375; 400 ± 1.5	75; 100; 125; 150; 250; 300; 350; 375; 400 ± 1.5	YES
	200 ± 1	200 ± 1	200 ± 1	
Compressive strength-	> 2	2,4/2,6	2,1/2,4	YES
(N / mm ²)				
D imensional stability	max. 0.4	<0,4	<0,4	YES
(mm/m)				
Water absorption (90min)	Max. 120	< 120	< 120	YES
(g/m² s 0.5) W ater vapor permeability	Range 5/10	Between 5/10	Betw een 5/10	YES
Apparent density (kg/m³)	400 ± 40	400 ± 40	400 ± 40	YES
Thermal conductivity	<0,1112	0,1125	0,1195	YES
(W/m K)				



Environmental impacts of 1 m³ of AAC blocks by mix design.

Import Cotogory [EE 3.1]	Unit	A A C control	AAC BFS J CCS	AAC BFS C+I - CCS (Per cen tage r eduction)	
Impact Category [EF 3.1]	Unit	AAC control	(Per cen tage reduction)		
Acidification	mol H+eq	0.4321	47%	49%	
Water resource depletion	m³ world eq. deprived	48.33	17%	21%	
O zone depletion	kg CFC-11 eq	2.67E-06	14%	15%	
Fossil resource depletion	MJ	1628.24	26%	26%	
Mineral and metal resource depletion	kg Sb eq	2.00E-04	50%	50%	
C limate change (total)	kgCO₂eq	206.13	48%	48%	
Freshwater ecotoxicity (total)	CTUe	163.59	36%	34%	
Eutrophication, freshwater	kg P eq	2.83E-02	36%	36%	
Eutrophication, marine	kg Neq	1.14E-01	55%	57%	
Eutrophication, terrestrial	mol N eq	1.1963	57%	59%	
Photochemical ozone formation, human health	kg NMVOC eq	0.4183	47%	48%	
Particulate matter	D isease incidence	3.42E-06	33%	39%	
Ionizing radiation, human health	kBq U235 eq	10.97	28%	28%	
Human toxicity, cancer effects (total)	CTUh	1.22E-07	56%	55%	
Human toxicity, non-cancer effects (total)	CTUh	9.88E-07	63%	64%	
Land use	pt (points)	377.65	20%	29%	

More information:

https://snugproject.eu/aerated-eco-concrete-blocks/

• Development of Low-Carbon Autoclaved Aerated Concrete Using an Alkali-Activated Ground Granulated Blast Furnace Slag and Calcium Carbide Slag. Appl. Sci. 2025, 15, 9946. https://doi.org/10.3390/app15189946

• Properties of Cement-Based Materials Incorporating Ground-Recycled Diatom. Crystals 2024, 14, 1030. https://doi.org/10.3390/cryst14121030

