

Energy Islands for a Sustainable Future:

Insights from European Research Projects

Day **3** Thurs. 10 Oct. 14.00 - 15.00 CEST

In-person Workshop

Projects

- NESOI •
- NESOIplus •
- Masterpiece •
- SINNOGENES
 - ISLET •
 - **BRIDGE** •

Agenda

14.00 Introduction

Giovanni Pica

14.05 NESOI and NESOIplus projects compared

Mario Cortese – Alessandra Montanelli Alessandra Montanelli

14.25 Island as living LABs

Cristina Barbero Christian Galletta Giovanni Pica Giorgia Spigliantini

14.45 Q&A - Conclusion

Giovanni Pica

EUROPEAN ISLANDS FACILITY

Island as living laboratories

Islands are places of natural beauty, rich biodiversity, and deep cultural heritage

They are also energy systems in miniature: complex, self-contained, and exposed to external pressures

Challenges

Dependence on imported fossil fuels

High energy costs

Vulnerability to climate change

EU investments in R&D projects

Opportunities

Island as living laboratories

Islands are places of natural beauty, rich biodiversity, and deep cultural heritage Controlled scalability

Clear boundaries

Strong community identity

Geographical isolation

They are also energy systems in miniature: complex, self-contained, and exposed to external pressures

Islands as living laboratories for the energy transition

Island as living laboratories

Islands are places of natural beauty, rich biodiversity, and deep cultural heritage

Controlled scalability

Clear boundaries

Strong community identity

Geographical isolation

They are also energy systems in miniature: complex, self-contained, and exposed to external pressures

Islands as living laboratories for the energy transition

EU Projects

supports local authorities on islands in preparing and implementing clean energy investments

supports the creation of Renewable Energy Communities

builds on NESOI's legacy and focuses on the EU's Outermost Regions

SINN@GENES

designs resilient and flexible energy systems for insular territories

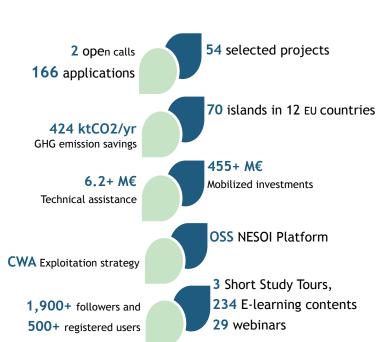
empowers local governments to scale up successful pilot energy transition experiences

connects EU projects and links their outcomes to European policy

New Energy Solutions Optimised for Islands

Speaker:

Mario Cortese - R2M Alessandra Montanelli - SINLOC



NESOI Facility as a Reference Practice

Impact

NESOI in the EU standardization systemOur drivers

- A NESOI promoted CWA (a publicly recognized reference practice) to establish a standardized methodology to assist the islands
- NESOI developed a structured and organized system and method to assist islands ETP.
- Broad geographical and technological coverage: 54 projects (86 islands)
- ✓ General **successful** support proved by positive feedbacks from our beneficiaries
 - Partners promoting and leading CWA works:

NESOI in the EU standardization systemWhat is a CEN Workshop Agreement (CWA)?

- A process promoted by CEN to publish and formalize a reference practice within a specific domain
- A CWA advantageous for addressing dynamic and rapidly evolving fields within the European market.
- A CWA offers a flexible and efficient way to develop specifications or guidelines within the European standardization system.
- A CWA allows to address industry needs rapidly, fostering innovation and adaptation to new methodologies, processes and technologies.
- A CWA provides a more agile framework for industry stakeholders to create consensus-driven documents that can be easily updated or revised as needed.

Standardized Approach for the Management of Technical Assistance Platform and Cascade Funding Mechanism (CWA 18270, September 2025) Scope

The NESOI-Promoted CEN Workshop Agreement defines procedures for the management of technical/financial/legal support to energy transition projects implemented through a cascade funding approach. This includes procedures for the selection of projects to be supported, standardization of technical/financial/legal assistance menus for energy transition projects, procedures for the management of cascade funding initiatives and methodology to assess replication and boost islands' empowerment.

STANDARDIZED PROCEDURES

- 1. Management of Open calls
- 2. Management of the Technical Assistance
- 3. Management of the Cascade funding

The Final CWA was published on 11 Sep. 2025. Available on CEN website and on ALL National Standardization Bodies websites Europe-wide

Useful Links

Direct Download here!

https://www.cencenelec.eu/media/CEN-CENELEC/CWAs/RI/2025/cwa 18270 202 5.pdf

On CEN-CENELEC Official Download Page it is currently listed as the 2nd most recent CWA published in Europe

https://www.cencenelec.eu/get-involved/research-and-innovation/horizon-europe-project s/cwa-download-area/

2025-06-25 Final Public Consultation Announcement

https://www.cencenelec.eu/news-events/news/2025/workshop/2025-06-06 _nesoi/

2024-05-29 Kick off Announcement

https://www.cencenelec.eu/news-events/news/2024/workshop/2024-05-29-nesoi/

CEN

CWA 18270

WORKSHOP

September 2025

AGREEMENT

ICS 27.010; 03.100.70

English version

Standardized Approach for the Management of Technical Assistance Platform and Cascade Funding Mechanism

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National Members of CEN but neither the National Members of CEN nor the CEN-CENELEC Management Centre can be had accountable for the technical content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hugary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and United Kingdon.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2025 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No.:CWA 18270:2025 E

Speaker:

Alessandra Montanelli - SINLOC

At a glance

OSS

ENERGY COMMUNITIES

OUTERMOST REGIONS

INVESTMENT PIPELINES

What's next

2 open calls (in Apr26 and Feb27)

New One-Stop-Shop for islands

SST and capacity building

EU Projects

supports local authorities on islands in preparing and implementing clean energy investments

supports the creation of Renewable Energy Communities

and focuses on the EU's
Outermost Regions

designs resilient and flexible energy systems for insular territories

empowers local governments to scale up successful pilot energy transition experiences

connects EU projects and links their outcomes to European policy

Speaker:

Cristina Barbero - Municipality of Berchidda

Consortium formed by 19 participants. (2023-2026)

MASTERPIECE wants to build a modular platform to help with the creation and operation of energy communities.

The platform will contain social and technological innovations

Stintino
Castelsardo
Porto Cervo
Stintino
Castelsardo
Pausania
Olbia
Castelsardo
Pausania
Olbia
Castelsardo
Sustanado
Sustanado
Sustanado
Sustanado
Castelsardo
Cipcolo
Alghero
Cala Conone
Orgosolo
Abbasanta
Sardegna
Oristano
Tortoli
Bari Sardo

Oristano
Bari Sardo

Costa Rei

2668 inhabitants

Masterpiece

frightened and a little sceptical of the national regulatory process, but maximum confidence in the mayor PVS 106 + 5

REC

Strong local community engagement

MEROPE

Where the effective is clearing its designation de management groups are reported and an experience of the effective in the effective

New decree coming: positive for local communities > 5k inhabitants Reduce energy costs + more efficiency - blackout

Gender	Degree	Diploma	Secondary School	Primary School	Alphapets
Male	57	271	435	324	77
Female	84	305	492	356	158
Tot	141	576	987	680	235

Present

Future Plans

	2025		2026		2027
Current goals		Project final goals		Project results	
	> REC's members		Contact local community/citizens		Dissemination& Communication via social media
Ÿ	> Energy optimization	Mg ja	Public events to share common vision/goals		> REC's members
	> Community engagement		foster a sense of community	©	Dissemination& Communication via social media

SINN@GENES

Speaker:

Giovanni Pica – RINA Consulting

Objectives, key concepts and workflow

Objectives

SINNOGENES aims to facilitate the large-scale integration of innovative energy storage technologies into European energy systems, developing the SINNO toolkit: a set of digital tools, business models, and technological solutions for storage

Key concepts:

- ✓ SINNOGENES is not a storage-only project
- ✓ SINNOGENES does not follow a linear "first generation, then storage" approach.
- It's a system-level integration of generation, storage, and control.

Phase 2 Development

Phase 3 Demonstration

Phase 4 Valorization

Phase 1 Pre-development

- Analysis of flexibility requirements for market compliance.
- Design of the SINNO energy toolkit architecture (generation and storage)
- Focus on interoperability, data

- Development of individual tools for:
 - i) Storage technologies (batteries, flywheels, hydro-pumped, thermal)
 - ii) Generation systems (PV, wind, hydrogen electrolysis, geothermal)
- Real-world pilots in six demo sites
 Ikaria: wind + hydro-pumped
 storage
- Geneva: PV + hydrogen + battery

thermal storage + electric arid

✓ Soria/Huesca: geothermal +

- Scalability and replicability
 analysis of storage technologies.
- / Impact assessment:
- environmental, economic, social.

Cross-sector integration: mobility,

industrial residential

exchange and IT integration

SINN @ GEN ES

Focus on insular systems

WP5: Transport & Insular Systems

Develops tools for integrating energy storage into smart grids, focusing on flexibility management, monitoring, and control

T5.3 Demonstration in Ikaria, Greece

Conducts the demonstration activities, from the setup of the digital twin (integrating the tool to the existing system operators' tools and systems) to the demonstration of the use cases in the pilot

T5.2 Tools for virtualized investment planning for operators valorising hydro-pumped storage

Generate the digital twin of a hydro-pumped storage plant, along with the connected power system

T5.1 Tools for management of transport fleets and synergy with the energy networks

Establishes Al-powered transport services considering the energy storage and consumption requirements and the synergy with the corresponding energy network

SINN**⊚**GE N ES

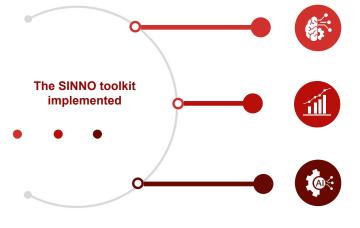
T5.2 Tools for virtualized investment planning for operators valorising hydro-pumped storage

Generate the digital twin of a hydro-pumped storage plant, along with the connected power system

A digital twin is like a "digital replica" of the real electrical grid: a virtual model that represents the current state and operation of the network

The digital model is connected to the data and software currently used by operators to monitor and control the grid

Data will be collected from smart meters and network control devices installed at medium and high voltage levels. They monitor the status of lines, transformers, and plants


Based on this comprehensive dataset, the digital twin platform will generate a variety of detailed scenarios, used to perform targeted feasibility studies

T5.3 Demonstration in Ikaria, Greece

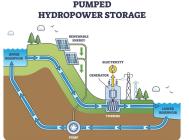
Conducts the demonstration activities, from the setup of the digital twin (integrating the tool to the existing system operators' tools and systems) to the demonstration of the use cases in the pilot

Tool development

Digital Twin:

A virtual replica of Ikaria's power system

Day-Ahead Optimizer:


calculates the best energy mix for the next day

Forecasting Tool:

Uses AI to predict wind energy production to improve grid stability

Lessons learned and challenges

The SINNO toolkit implemented

Digital Twin:

A virtual replica of Ikaria's power system

Day-Ahead Optimizer:

calculates the best energy mix for the next day

Forecasting Tool:

Uses AI to predict wind energy production to improve grid stability

Lessons learned

- Digital twins are powerful tools for planning when validated with real data.
- Al-based forecasting significantly improves accuracy
- Hydro-pumped storage effectiveness depends on system constraints
- Curtailment must be minimized to ensure economic and environmental efficiency

Challenges Encountered

- Safety Grid Requirements limited the achievable RES penetration.
- Computational complexity and performance
- Data availability and granularity
- Modeling interconnections

Speaker:

Christian Galletta - FEDARENE

ISLET focuses on developing Renewable Energy Communities (RECs) on small Mediterranean islands, by empowering local authorities to create a favourable environment for RECs and collaborate with citizens.

In pills

- → 7 Renewable Energy Communities (RECs) (3 in pilot islands and 4 in test islands).
- 30 replication islands.
- 30 local authorities representatives and staff trained on the regulatory framework, funding possibilities, and formal steps to take to build a REC.
- ☐ Improvement of knowledge on RECs for 70 small islands local authorities.
- At least 500 citizens (180 families) involved in 3 pilot islands and 4 test islands.
- 5 help desks at EU level to support local authorities in the development of RECs also after the project end

Pilot islands – Lessons learnt

Procida (Italy)

legitimacy

- Local facilitators build trust and overcome barriers
- Strategic alignment with Sustainable Energy Action Plans (SEAPs) and EU policy adds leverage
- Visible implementation builds momentum

Astypalea (Greece)

- The strong local authority relationships were essential
- Conflict management and member differentiation are key
- One-to-one engagement builds trust
- Complex procedures require extra time

Cres (Croatia)

- Legal National frameworks are misaligned and unclear
- Cooperatives face unjust exclusion
- Infrastructure ownership is a bottleneck
- Persistence and clear communication are critical

Takeaways

Make REC tangibles with pilot scale actions (e,g, a PV plant on a school)

Local trust and facilitation are critical

National REC laws are fragmented, leading to admin complexities

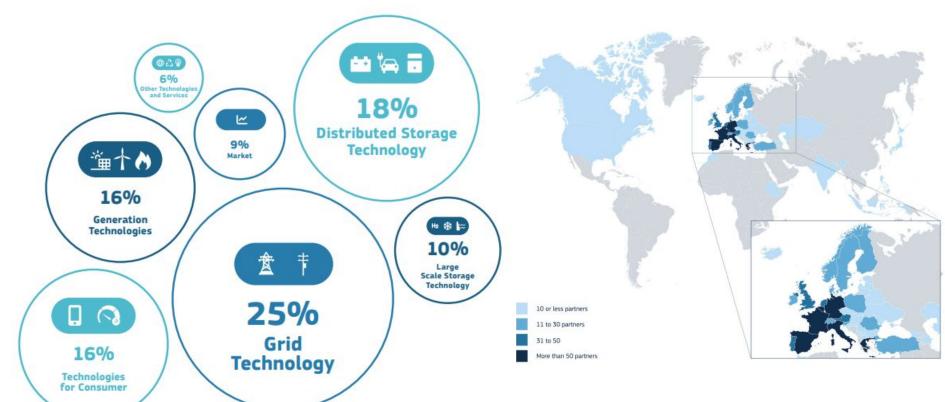
RECs can serve as living testbeds for policy reform

Speaker:

Giorgia Spigliantini – RINA Consulting

- Sharing of best practices and lessons learned
 - Support for the resolution of challenges
 - 3 Support in the uptake of results
 - 4 Generation of new project ideas
 - 5 Networking with key energy actors
 - Knowledge sharing

BRIDGE is the European Commission initiative which unites Horizon 2020 and Horizon Europe (funded between 2014 and 2024) **Smart Grids**,


Energy Storage, Islands, and Digitalisation Projects.

Its objective is to create a structured view of cross-cutting issues encountered in demonstration projects, discuss solutions to overcome obstacles to innovation, share knowledge and deliver recommendations to facilitate the energy transition.

Partners involved in BRIDGE projects

Technologies for Consumers

Demand response, smart appliances, smart metering, heating/cooling peak load management

Generation technologies

Wind turbines, photovoltaic (PV), solar thermal, biogas, tidal energy, micro-generation, floating offshore wind, floating offshore PV, Ocean thermal energy conversion (OTEC)

Grid Technologies

HVDC, HVAC, multi-terminal (MT), protections, HVDC breaker, grid inertia, network management, monitoring and control tools1, micro-grid, semiconductor devices and power converters

Market

Infrastructure costs, electricity market, ancillary services, other market services

Large-scale storage technologies, in general connected a transmission level

Power to gas (P2G), compressed air energy storage (CAES), hydro storage, and molten salt storage

Other technologies and services

Recycling demonstration plant for EoL windmill blades, Ultra-High-Strength - concrete precast components, innovative materials, Life Cycle Assessment (LCA), energy system modelling

Small-scale storage technologies, in general connected at distribution level

Battery energy storage systems (BESS), flywheel energy storage, pumped hydro storage, thermal energy storage (TES), hydrogen energy storage, compressed air energy storage (CAES)

BRIDGE Working Groups

BRIDGE enables projects to **share knowledge continuously and speak with a single voice** when delivering conclusions and recommendations for future project result utilization through **four**

Werking groups (MCs)

Regulati on

Regulation, established with the aim of fostering knowledge sharing among projects addressing the different regulatory aspects in the energy domain: it structures its activities by focusing on various regulatory aspects in the energy sector to identify best practices to overcome them and making suitable recommendations

Business Models

Business Model,
established with the aim to
define a common
framework for describing
and evaluating business
models, identify and assess
existing and innovative
models from project
demonstrations or use
cases, and develop
standardised processes and
effective mapping to enable
comparison of different

Data Management

Data Management, cover a wide range of aspects ranging from the technical means for exchanging and processing data between interested stakeholders, to the definition of rules for exchange, including cybersecurity issues and responsibility distribution in data handling

Consumer and Citizen

engagement

Consumer and Citizen
Engagement, established
with the aim of creating a
structured cross-cutting
understanding of the role
and methodologies of
engagement in European
R&I projects towards better
understanding, triggering,
and leveraging the action of
consumers and citizens in
the energy landscape

Type of Island	Proiect	Short description	WG
Phisical Island	IANOS	Decarbonisation and smartification of island energy systems through renewable integration, flexibility services, and community engagement.	
	ISLANDER Deployment of renewables, storage, electric vehicles, and district heating to create a smart and resilient energy system on Borkum Island.		CCE
	MAESHA	Development of smart grids and energy communities to enhance flexibility and decarbonisation in non-interconnected territories.	BM, DM, REG
	RE-EMPOWER ED	Multi-vector microgrid solutions for island decarbonisation, integrating renewables, storage, and advanced control systems.	BM, DM, REG, CCE
	VPP4ISLANDS	Design and implementation of Virtual Power Plants to enable intelligent energy management and flexibility on islands.	DM, REG, CCE
	SMHYLES	Hybrid energy storage systems to improve resilience and reliability of isolated island grids.	ВМ
	ROBINSON	Local integration of hydrogen and biomass technologies to decarbonise industrial activities on islands.	N/A

Q&A

supports local authorities on islands in preparing and implementing clean energy investments

supports the creation of Renewable Energy Communities

designs resilient and flexible energy systems for insular territories

empowers local governments to scale up successful pilot energy transition experiences

connects EU projects and links their outcomes to European policy

Summary and next steps

Each project brings a different piece of the puzzle

Planning and investment support

Community empowerment

Policy alignment and standardization

Technical resilience and digital tools

Next steps:

Strengthen collaboration

Engage municipalities and citizens

Contribute to standards and policy

Keep the conversation going

Thank you for your attention!