

ENERGY EFFICIENCY AND SMART READINESS OF BUILDINGS

WORKSHOP

8-10 October 2025

Milano

Smart Readiness in Action: Unlocking Energy Efficiency and Comfort in Buildings Day 2 – Thursday 9th October, 14:00-15:30 – Room 7

Moderator

Speakers

Valerie Bahr Head of Department Climate, Energy, Mobility Steinbeis Europa Zentrum

Matteo Porta Senior Project Engineer RINA Consulting

Giannis Papias
Researcher & Energy
Specialist
NTUA

Konstantinos Mamis Project Manager, Researcher Que Technologies

Keovathana Run Postdoctoral researcher *Côte d'Azur University*

Łukasz Wilczyński Project Manager ASM Research Solutions Strategy

REHOU

Agenda

How is the Smart Readiness Indicator (SRI) making buildings more resilient, sustainable, and smart?

Focus 1: SRI in the Operative – Tools and Methodologies

 How are digital tools and methodologies making the SRI measurable and actionable in real-world settings?

Focus 2: Demonstrations in Practice

 What does SRI implementation look like on the ground and what are we learning from it?

Focus 3: Beyond Energy

 How does the SRI framework support broader goals like resilience and occupant comfort?

Panel Discussion

After each focus segment, participants and speakers engage in shared reflections and cross-project discussions to capture insights, spark questions, and encourage inter-project learning.

Detailed Agenda (internal slide)

Time	Topics & Speakers
15'	Opening and welcome by moderator Valerie Bahr
20'	Focus 1: SRI in the Operative - Tools and Methodologies
5'	 Matteo Porta (RINA): how the SRI digital calculation tool supports the implementation of the SRI in historic buildings (SMARTeeSTORY)
5'	 Giannis Papias (NTUA): how the SRI calculator and SMURF Assessment Tool enables the operational implementation of the SRI (BuildON)
5'	 Konstantinos Mamis (Que Technologies): how the BIM-to-BEP and BIM-to-SRI transformation engines can streamline SRI and energy assessments form a unified model (CHRONICLE)
5'	Echoes & Insights
15' 5' 5'	 Focus 2: Demonstrations in Practice Matteo Porta (RINA): how hands-on experience in renovation demos can help shape and refine the SRI (REHOUSE) Keovathana Run (University of Cote d'Azur). how innovative building materials and envelope can enable buildings to operate in a smart, energy-efficient, and resilient way, thus supporting the SRI (INBUILT) Echoes & Insights
20'	Focus 3: Beyond Energy
5'	 Łukasz Wilczyński (ASM Research): comprehensive approach through incorporation of resilience-based support tools within energy efficiency and indoor environmental quality directly aligns with promoting the SRI (MULTICARE)
5'	 Konstantinos Mamis (Que Technologies): CHRONICLE approach advances building monitoring and occupant comfort (CHRONICLE)
5'	Matteo Porta (RINA): SMARTeeSTORY approach advances building monitoring and occupant comfort
5'	Echoes & Insights
20'	Panel discussion & wrap up

Let's get to know each other

Head over to menti.com

Access code: 6277 0592

Focus 1

SRI in the Operative – Tools and Methodologies

How are digital tools and methodologies making the SRI measurable and actionable in real-world settings?

Matteo Porta, Senior Project Engineer, RINA-C

Giannis Papias, Researcher & Energy Specialist, NTUA

Konstantinos Mamis, Project Manager, Researcher, Que Technologies

SMARTeeSTORY SRI web app - Functionalities

Matteo Porta, Senior Project Engineer, RINA-C Noelia Vicente Gomez, Researcher, TECNALIA

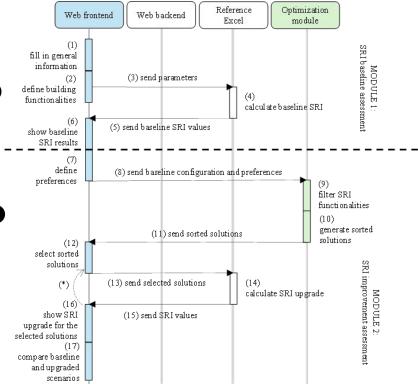
User side

- Fill wizard
- Visualize results
- Related operations:

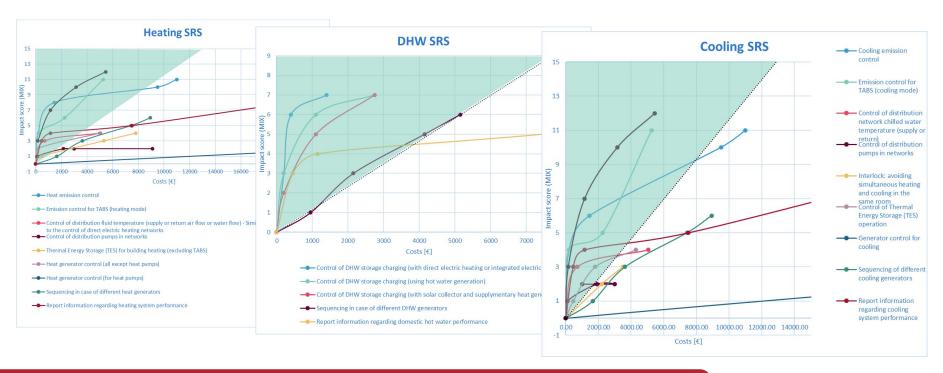
Server side

- Wizard configuration
- SRI calculation (based on official excel file)
- Advanced optimization logics

tecnal:a



SMARTeeSTORY SRI web app - Workflow



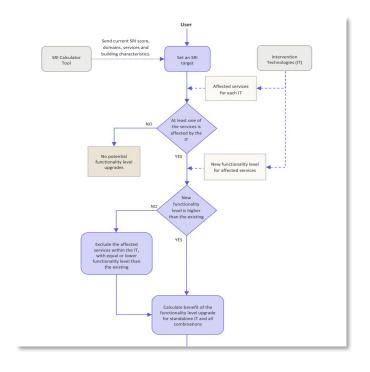
SMARTeeSTORY SRI web app - SRS cost analysis

Giannis Papias, Researcher & Energy Specialist, NTUA

Purpose of the tool:

- Define specific Smart Readiness Indicator (SRI) targets
- Explore tailored upgrade paths to achieve goals
- Optimized, cost-effective scenarios with minimal intervention
- Integrates real market technologies, costs & emissions
- Builds upon SRI Calculator for continuity

From SRI assessment to cost-effective smart upgrade scenarios

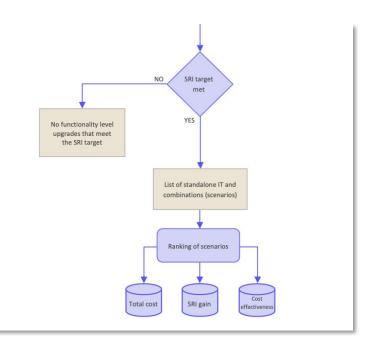

Methodology (Overview):

Two modules:

- SRI Assessment data collection & baseline calculation
- Decision Support target setting & upgrade scenarios

Scenarios ranked by:

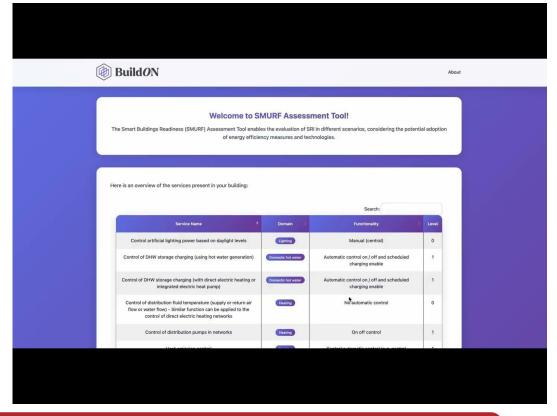
Total cost | SRI gain | Cost-effectiveness


EPUN · T · U · A

From SRI assessment to cost-effective smart upgrade scenarios

Methodology (Process Flow):

- User defines target SRI
- Catalogue of Intervention Technologies (ITs) evaluated
- ITs mapped to services → functionality improvements
- 4. Tool checks for feasibility & calculates benefits
- Generates valid upgrade scenarios or closest match



From SRI assessment to cost-effective smart upgrade scenarios

Demonstration

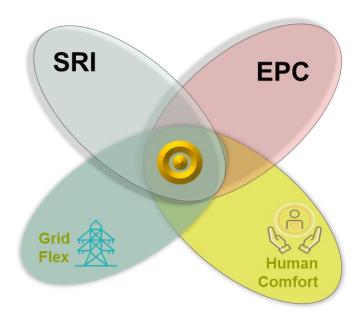
EPU N · T · U · A

From SRI assessment to cost-effective smart upgrade scenarios

Finalization

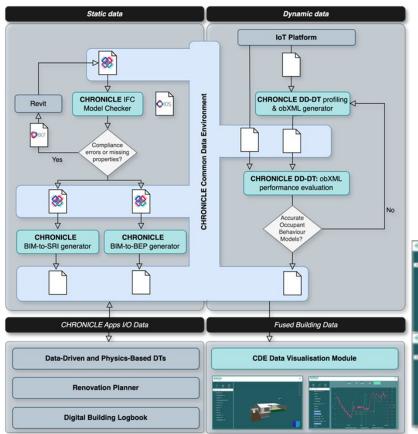
- Fully functional tool integrated with SRI Calculator
- Scenario-based approach: practical & market-ready
- Features:
 - Real product integration
 - Carbon emissions insights
 - Exportable results
- Validated with 5 pilot buildings including residential and commercial buildings
- Supports informed & sustainable decision-making

Join us!


Main Challenges & Barriers:

Offering data-driven and performance-based SRI calculation

Konstantinos Mamis, Project Manager, Researcher, Que Technologies


- Lack of Common Inspection and Data collection protocols for SRI and EPC
- High level of subjectivity in the selection and evaluation of services and functionalities leading to inconsistent results
- Human-centric performance aspects (comfort, convenience, well being) would be better represented through outcome-based assessment practices
- "Hidden" interdependencies between the various performance factors included in the SRI impact criteria (e.g. comfort vs flexibility driven by human preferences) are not accounted for

Focus 1: SRI in the Operative - Tools and Methodologies

The CHRONICLE Solution: One Source, Many Uses

Achievements: SRI+ **Future Advancement** BIM-enabled (PSets) definition SRI Bota types supported: Area, Boolean, ClassificationReference, ColorTemperature, Count, Currency, ElectricalCurrent, ElectricalEfficacy, ElectricalVoltage, Force, Frequency, Identifier, ElectricalCurrent, ElectricalEfficacy, ElectricalVoltage, Force, Frequency, Identifier, ElectricalCurrent, ElectricalEfficacy, ElectricalVoltage, FostiteVelenche, PositiveVelenche, Positi **BIM-enrichment** # CHRONICLE WHEATTING DOMATN Pset HeatEmissionControl IfclinitaryControlFlement Pset_HeatEmissionControl I HeatingDMSControlAvailability Boolean HeatingDMSControlAvailability Boolean HeatingDMSPresenceControl Boolean HeatingDMStemReport Boolean HeatingHistoricalSystemReport Boolean HeatingSystemForecasting HeatingSystemManagementAndFaultDetection Pset UnitaryHeatGeneratorControl IfcUnitaryEquipment HeatingConstantTempControl Boolean HeatingVariableTempControlOutdoorTemp Boolean Service included in Pset_SHeaterHeatGeneratorControl I HeatingConstantTempControl Boolean HeatingVariableTempControlOutdoorTemp Boolean HeatingVariableTempControlLoad Boolean Main share (default = Optional: present: the selected Service applicable in your building? additional functionality 100% means Pset_HeatPumpControl I IfcUnitaryEquipment HeatIngOndTfComr.a Boolean HeatIngVariableTempControlLoad Boolean HeatIngVariableTempControlLoad Boolean HeatIngContInteraction Boolean to be assessed by the assessor: 1 level as applicable functionality Warnings but mand (A/B/custom): 0 applicable; 0 - not applicable inspected by SRI throughout the level in part of vice does Pset_HeatingStorage I HSAvailability Boolean HMSRemoteConnection Boolean UsageOptimisation Boolean not included, 1 absent an assessor building) the building ol - demand side Heat emission control Emission control for TABS (heating ol - demand side t production please enter a valid Storage and shifting of thermal energy 80% functionality level

After each focus segment, participants and speakers engage in shared reflections and cross-project discussions to capture insights, spark questions, and encourage inter-project learning.

Echoes & Insights

What moment or insight sparked your interest the most?

What questions or connections does this raise for your own work?

Demonstrations in Practice

What does SRI implementation look like on the ground and what are we learning from it?

Keovathana Run, Postdoctoral researcher, Côte d'Azur University

Matteo Porta, Senior Project Engineer, RINA Consulting

ACCELERATING THE EUROPEAN RENOVATION RATE

Project funded by

Schweizerische Eidgenossenschaft

Federal Department of Economic Affairs

Swiss Confederation

Hands-on experience in renovation demos |

Matteo Porta, Senior Project Engineer, RINA Consulting

The SRI:

- Provides the ground truth of the building status, before and after renovation.
- Assists with the technical assessment and feasibility of renovation works.
- Validates and quantifies actual performance, and
- Improves the usability and interpretation of data from the stakeholders.

Hands-on experience in renovation demos |

Student Residences

Xanthi, Kimmeria, Greece

Student Residences

Budapest, Hungary

Residential Building

Margherita di Savoia, Italy

Residential Building

Saint-Dié-des-Vosges, France

Hands-on experience in renovation demos

ACCELERATING THE EUROPEAN RENOVATION RATE

	Energy efficiency	Energy flexibility and storage	Comfort	Convenience	Health, well- being and accessibility	Maintenance and fault prediction	Information to occupants
Heating	52,4%	18,2%	41,7%	45,5%	40,0%	60,0%	75,0%
Domestic hot water	54,5%	27,3%	0,0%	57,1%	0,0%	100,0%	100,0%
Cooling	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%
/entillation	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%
ighting	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%
Synamic building envelope	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%
Sectricity	57,1%	36,4%	0,0%	63,6%	0,0%	83,3%	100,0%
Sectric vehicle charging	0,0%	0,0%	0.0%	0,0%	0,0%	0,0%	0.0%
Monitoring and control	20.0%	42.9%	0.0%	21,4%	66,7%	27,3%	55.6%

AGGREGATED SCO	RES	
Key functionality 1 - building	50,6%	
Key functionality 2 user	50,6%	
Key functionality 3 - grid	27,4%	

The Greek demonstration site conducted the following baseline SRI assessment, before the renovation works:

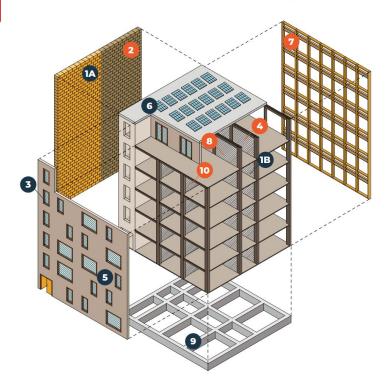
Hands-on experience in renovation demos |

This overview provides important insights concerning the main building systems, and the possibilities for improvement.

It further visualizes these results, assisting stakeholders in understanding their buildings' strengths, weaknesses and adequately form a renovation plan.

INBUILT

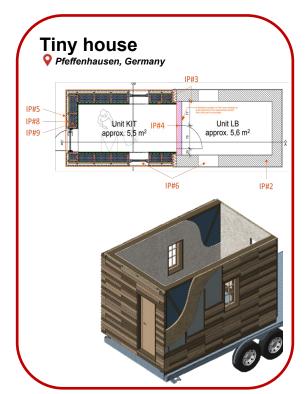
Innovative Building Materials


Keovathana Run, Postdoctoral researcher, Côte d'Azur University

REUSED AND RECYCLED MATERIALS

- A Recycled Fired Bricks
- Recycled non-fired Bricks
- 3 BioPUR-framed Smart Plasmochromic Windows
- Reclaimed Wood Wall Panels
- 6 Second-Life Photovoltaic Panels
- 9 Recycled Concrete Blocks and in-situ Recycled Concrete

LOW CARBON BUILDING PRODUCTS


- 2 Compressed Earth Blocks
- Bio-based Insulations Panels
- Bio-based Curtain Walls
- 8 Hybrid Straw-clay Boards
- Recycled Paper and Textile Fiber

INBUILT

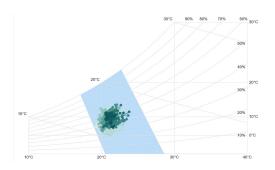
Demonstration Sites

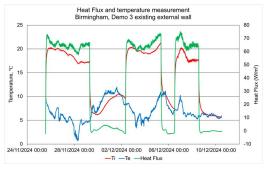
SRI Implementation on Demo Sites

Electricity

On-site renewable electricity (second life PV)

Monitoring & Control


 Real-time monitoring of indoor climate, electricity loads and energy consumption


Energy Efficiency

- Innovative building materials and envelopes
- Energy performance evaluation through simulation and calibrated with real data

Occupant Comfort

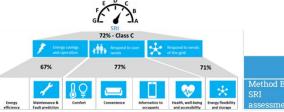
Thermal comfort assessment

SRI Implementation on Demo Sites: Granada

Matteo Porta, Senior Project Engineer, RINA-C

Facilities of the High Court of Justice in Granada

Baseline


12%, class

G

Future

C

72%, class

Detailed impact scores view for foreseen future scenario, method B assessment and Granada demo.

SRI Implementation on Demo Sites: Riga

 Heat emission control; •Flexibility and grid interaction •Report information regarding domestic hot water performance Cooling emission control;

• Supply air flow control at the room level; Supply air temperature control at the air handling unit level; Reporting information regarding IAQ

 Occupancy control for indoor lighting •Control artificial lighting power based on daylight levels

•Report information regarding cooling system performance

 Window solar shading control; Window open/closed control, combined with HVAC system

•Reporting information regarding local electricity generation; Storage of electricity

•EV Charging Capacity; EV Charging Grid balancing; EV charging information and connectivity.

•Run time management of HVAC systems; Single platform that allows automated control & coordination between TBS + optimization of energy flow based on occupancy, weather and grid signals

Riga City Hall

Detailed impact scores view for foreseen			
future scenario, method B assessment and			
Riga demo.			

	Baseline scenario	Future scenario
Method B	12%,	89%,
SRI	class G	class B
assessment		

SRI Implementation on Demo Sites: Delft

HEATING

- •Heat Emission Control;
- •Control of distribution fluid temperature
- Flexibility and grid interaction

VENTILATIO

- •Supply air flow control at the room level
- ·Air flow or pressure control at the air handler level
- •Reporting information regarding IAQ

ICHTIN

- Occupancy control for indoor lighting
- Control artificial lighting power based on daylight levels

DYNAMIC BUILDING NVELOPI

- •Window solar shading control
- •Window open/closed control, combined with HVAC system
- •Reporting information regarding performance of dynamic building envelope systems

LECTRICI

•Reporting information regarding electricity consumption

MONITORING

- Detecting faults of technical building systems and providing support to the diagnosis
 of these faults
- Single platform that allows automated control & coordination between TBS + optimization of energy flow based on occupancy, weather and grid signals

University building hosting the Faculty of Architecture and the Built Environment of TUD

	Baseline scenario	Future scenario
Method B SRI assessment	21%, class F	78%, class C

Detailed impact scores view for foreseen future scenario, method B assessment and Delft demo After each focus segment, participants and speakers engage in shared reflections and cross-project discussions to capture insights, spark questions, and encourage inter-project learning.

Echoes & Insights

What moment or insight sparked your interest the most?

What questions or connections does this raise for your own work?

Beyond Energy

How does the SRI framework support broader goals like resilience, comfort, and user engagement?

Łukasz Wilczyński, Project Manager, ASM Research Solutions Strategy

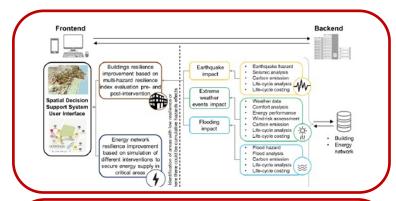
Matteo Porta, Senior project engineer, RINA-C

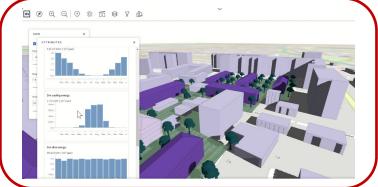
Konstantinos Mamis, Project Manager, Researcher, Que Technologies

Smart-readiness through resilience, energy & comfort (MULTICARE → SRI)

Łukasz Wilczyński, Project Manager, ASM Research Solutions Strategy

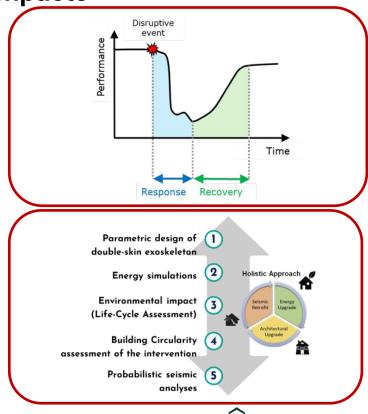
- MULTICARE links resilience-based decision support with Energy Efficiency (EE) and Indoor Environmental Quality (IEQ) to uplift the Smart Readiness Indicator (SRI).
- Digital twin (DT) calibrated models, early warnings and "what-if" scenarios — to optimize EE while maintaining IEQ
- Real-time monitoring & alerts integrate forecasts for smarter operation and safety (earthquakes, floods, heatwaves).
- Pilots verify performance against SRI and IPMVP (International Performance Measurement and Verification Protocol).
- User-centric interfaces & feedback loops enable comfort-driven operation and higher SRI service levels.



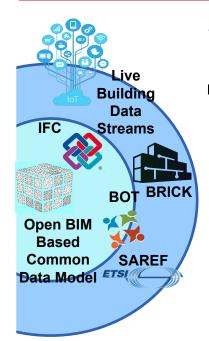


The resilience-based toolchain that powers SRI outcomes

- Resilience Readiness Levels (RRLs) + multi-hazard indicators (heat, seismic, wind, flood) quantify capacity to withstand & recover and guide design/renovation choices.
- Multi-Attribute Decision-Making (MADM) using AHP (Analytic Hierarchy Process) + TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) balances EE, IEQ, carbon, cost & resilience
- Embedded in BIM (Building Information Modelling) / CDE (Common Data Environment) and SDSS (Spatial Decision Support System) to coordinate from component → building → district.
- Outcome: data-driven prioritisation of measures that improve comfort, cut energy and increase adaptive capacity — directly improving SRI.

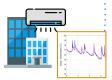


Evidence from pilots & labs: SRI-relevant impacts


- Energy & carbon: operational energy reduced in scenarios 175 → 87.5 kWh/m²·y), operational CO₂ down; digital services active post-retrofit.
- IEQ: 30–50% improvement targets via predictive heat-risk services and occupant-centric control.
- Risk & continuity: reduced Expected Annual Loss (EAL) and downtime through resilient façade/exoskeleton modules + monitoring/alerts
- –Example: EAL 2.5% → 1.2%
 - Alignment: monitoring and impact verification benchmarked to SRI (Smart Readiness Indicator) and IPMVP; supports smart operation & maintenance outcomes.

Data Driven Building Performance Framework

CHRONICLE


Konstantinos Mamis, Project Manager, Researcher, Que Technologies

EN 16798-1 Human centric Performance Modelling

- Occupancy
- Comfort
- IEQ

Data Driven Buildings/Asset Modelling

Humans, Buildings, Asset Modelling

"EU Kernel" ISO 52000 Energy Performance Engine

Flexibility

- Dynamic Flex Profiles
- Human centric & Multi-purpose Flex Profiles

Level(s)
Sustainability
LCC - LCA

Integrated Performance Calculation Engine

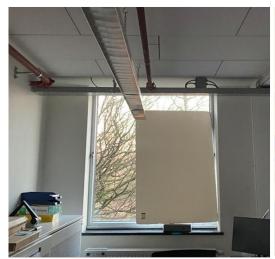
ChroViewFM View for Facility managers

View for Occupants

Common

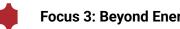
Data Model

Focus 3: Beyond Energy


TUDelft RIA

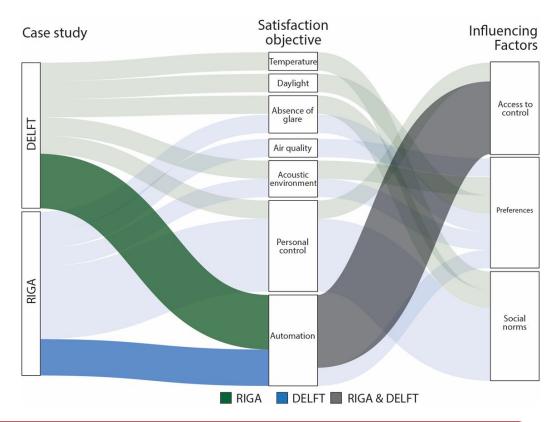
User centred approach

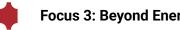
Matteo Porta, Senior project engineer, RINA-C Pablo Martinez Alcaraz, PhD candidate, TU Delft



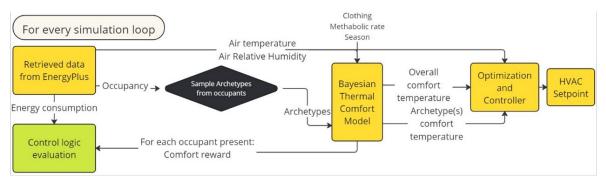
Buildings are 'humane' only when they promote **peaceful human co-existence**.

Frei Otto





User centered approach



User centred approach

Dynamic response **VS** Unified response

~ +7% thermal comfort

+5% energy consumption

Dynamic response VS Unified response

~ +6% thermal comfort

-3% energy consumption

Dynamic response **VS** Energy efficient (19°C)

~ +45% thermal comfort

~ +34% energy consumption

Dynamic response **VS** Energy efficient (24°C)

~ +4% thermal comfort

~ +13% energy consumption

After each focus segment, participants and speakers engage in shared reflections and cross-project discussions to capture insights, spark questions, and encourage inter-project learning.

Echoes & Insights

What moment or insight sparked your interest the most?

What questions or connections does this raise for your own work?

Panel Discussion

Open points to discuss

Panel discussion (internal slide)

- What topics need to be addressed that have not been addressed yet in the workshop?
- What is your dream question you would like someone ask about your project?

e.g. question asked by Valerie to ..

Keovathana (INBUILT) and Giannis (BuildON) What regulatory or market challenges hinder the adoption of innovative materials and smart technologies, and how can SRI assessments better recognize their impact on building performance?

- **Mateo (SMARTeeSTORY)**: How can the SRI assessment be adapted to address the unique constraints and preservation requirements of historic buildings, especially when traditional retrofitting is not feasible?
- Lukas (MULTICARE): What's the fastest path from lab pilots to mass retrofit? Which bottlenecks matter
 most—standards/interoperability, supply chains, skills/upskilling, or permitting/heritage rules—and how could
 SRI recognition help unlock scale?

Mateo REHOUSE: Can you share any lessons learned from stakeholder involvement or cross-project collaborations that influenced the outcome of your demonstration?

For Focus 3: Translating the new performance aspects: resilience, comfort, user behavior into a practical, operational SRI seems challenging. What do you think are the most realistic next steps to bring these enhancements into actual EU or national SRI frameworks?

Thank you!

Smart Readiness in Action: Unlocking Energy Efficiency and Comfort in Buildings



Connect with us

